Skip to main content
Log in

Microfluidic one-step, aqueous synthesis of size-tunable zeolitic imidazolate framework-8 for protein delivery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate framework-8 (ZIF-8) with porous structure, biocompatibility, and pH-sensitive release behavior is a promising nanoplatform for protein delivery. However, it is still a challenging task for a practical synthesis of protein-loaded ZIF-8 nanoparticles. Here we report an all-aqueous microfluidic reactor for one-step, rapid, and highly controlled synthesis of ZIF-8 nanoparticles with high protein loading at room temperature. Microfluidic reactor allows for an ultrafast (< 35 ms), complete mixing of Zn2+ ions and 2-methylimidazole (2-MIM) at different molecular ratios, leading to the formation of stable ZIF-8 nanoparticles with tunable sizes (13.2–191.4 nm) in less than 30 s. By pre-mixing various proteins such as bovine serum albumin (BSA) (isoelectric point (pI) = 5.82), ovalbumin (OVA) (pI = 4.82), or RNase A (pI = 8.93) with 2-MIM, ZIF-8 nanoparticles can be synthesized with protein encapsulation efficiency over 97%. Among the nanoparticles with different sizes, 25 nm ZIF-8 nanoparticles show the best performance in promoting the cellular uptake of protein payload. Using OVA as a model protein, we demonstrate that 25 nm ZIF-8 nanoparticles significantly enhance the cytosolic delivery of antigen, as indicated by the effective activation of dendritic cells. We anticipate that this microfluidic synthesis of nanomaterials may advance the emerging field of cytosolic protein delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J. M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571.

    CAS  Google Scholar 

  2. Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

    CAS  Google Scholar 

  3. Long, Q. X.; Liu, B. Z.; Deng, H. J.; Wu, G. C.; Deng, K.; Chen, Y. K.; Liao, P.; Qiu, J. F.; Lin, Y.; Cai, X. F. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848.

    CAS  Google Scholar 

  4. Topalian, S. L.; Hodi, F. S.; Brahmer, J. R.; Gettinger, S. N.; Smith, D. C.; McDermott, D. F.; Powderly, J. D.; Carvajal, R. D.; Sosman, J. A.; Atkins, M. B. et al. Safety, Activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454.

    CAS  Google Scholar 

  5. Abate, M. F.; Ahmed, M. G.; Li, X. R.; Yang, C. Y.; Zhu, Z. Distance-based paper/PMMA integrated ELISA-chip for quantitative detection of immunoglobulin G. Lab Chip 2020, 20, 3625–3632.

    CAS  Google Scholar 

  6. Fu, G. L.; Hou, R. X.; Mou, X. B.; Li, X. J. Integration and quantitative visualization of 3,3′,5,5′-tetramethylbenzidine-probed enzyme-linked immunosorbent assay-like signals in a photothermal bar-chart microfluidic chip for multiplexed immunosensing. Anal. Chem. 2021, 93, 15105–15114.

    CAS  Google Scholar 

  7. Shen, H. C.; Chen, X. Y.; Zeng, L. Q.; Xu, X.; Tao, Y. Z.; Kang, S. Y.; Lu, Y. Z.; Lian, M. J.; Yang, C. Y.; Zhu, Z. Magnetofluid-integrated multicolor immunochip for visual analysis of neutralizing antibodies to SARS-CoV-2 variants. Anal. Chem. 2022, 94, 8458–8465.

    CAS  Google Scholar 

  8. Zhao, X. Y.; Chen, Y. F.; Su, H.; Zhang, L. Q. From classic medicinal chemistry to state-of-the-art interdisciplinary medicine: Recent advances in proteolysis-targeting chimeras technology. Interdiscip. Med. 2023, 1, e20230004.

    Google Scholar 

  9. Frokjaer, S.; Otzen, D. E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298–306.

    CAS  Google Scholar 

  10. Qin, X. F.; Yu, C. M.; Wei, J.; Li, L.; Zhang, C. W.; Wu, Q.; Liu, J. H.; Yao, S. Q.; Huang, W. Rational design of nanocarriers for intracellular protein delivery. Adv. Mater. 2019, 31, 1902791.

    CAS  Google Scholar 

  11. Ren, L. F.; Lv, J.; Wang, H.; Cheng, Y. Y. A coordinative dendrimer achieves excellent efficiency in cytosolic protein and peptide delivery. Angew. Chem., Int. Ed. 2020, 59, 4711–4719.

    CAS  Google Scholar 

  12. Xie, R. S.; Wang, X. X.; Wang, Y. Y.; Ye, M. Z.; Zhao, Y.; Yandell, B. S.; Gong, S. Q. pH-responsive polymer nanoparticles for efficient delivery of Cas9 ribonucleoprotein with or without donor DNA. Adv. Mater. 2022, 34, 2110618.

    CAS  Google Scholar 

  13. Zhou, Y.; Gao, Y. F.; Pang, L.; Kang, W. R.; Man, K.; Wang, W. P. A green light-enhanced cytosolic protein delivery platform based on BODIPY-protein interactions. Nano Res. 2023, 16, 1042–1051.

    CAS  Google Scholar 

  14. Teplensky, M. H.; Evangelopoulos, M.; Dittmar, J. W.; Forsyth, C. M.; Sinegra, A. J.; Wang, S. Y.; Mirkin, C. A. Multi-antigen spherical nucleic acid cancer vaccines. Nat. Biomed. Eng. 2023, 7, 911–927.

    CAS  Google Scholar 

  15. Sa-Nguanmoo, N.; Namdee, K.; Khongkow, M.; Ruktanonchai, U.; Zhao, Y. X.; Liang, X. J. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Res. 2022, 15, 2196–2225.

    CAS  Google Scholar 

  16. Zhang, P.; Du, C. Y.; Huang, T. H.; Hu, S.; Bai, Y. C.; Li, C.; Feng, G. B.; Gao, Y.; Li, Z.; Wang, B. X. et al. Surface adsorptionmediated ultrahigh efficient peptide encapsulation with a precise ratiometric control for type 1 and 2 diabetic therapy. Small 2022, 18, 2200449.

    CAS  Google Scholar 

  17. Wang, Y. H.; Zhan, J.; Huang, J. Y.; Wang, X.; Chen, Z. H.; Yang, Z. M.; Li, J. Dynamic responsiveness of self-assembling peptide-based nano-drug systems. Interdiscip. Med. 2023, 1, e20220005.

    Google Scholar 

  18. Chen, T. T.; Yi, J. T.; Zhao, Y. Y.; Chu, X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J. Am. Chem. Soc. 2018, 140, 9912–9920.

    CAS  Google Scholar 

  19. Zhang, G. Q.; Fu, X.; Sun, H. F.; Zhang, P. Y.; Zhai, S. M.; Hao, J. C.; Cui, J. W.; Hu, M. Poly(ethylene glycol)-mediated assembly of vaccine particles to improve stability and immunogenicity. ACS Appl. Mater. Interfaces 2021, 13, 13978–13989.

    CAS  Google Scholar 

  20. Zhang, Y.; Wang, F. M.; Ju, E. G.; Liu, Z.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater. 2016, 26, 6454–6461.

    CAS  Google Scholar 

  21. Lv, M. Z.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J. F.; Wang, Z. H.; Li, X. J. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens. Bioelectron. 2021, 176, 112947.

    CAS  Google Scholar 

  22. Tang, J. K.; Liu, J.; Zheng, Q. Z.; Li, W. T.; Sheng, J. H.; Mao, L. Q.; Wang, M. In-situ encapsulation of protein into nanoscale hydrogen-bonded organic frameworks for intracellular biocatalysis. Angew. Chem., Int. Ed. 2021, 60, 22315–22321.

    CAS  Google Scholar 

  23. Zheng, Q. Z.; Li, W. T.; Mao, L. Q.; Wang, M. Nanoscale metal-organic frameworks for the intracellular delivery of CRISPR/Cas9 genome editing machinery. Biomater. Sci. 2021, 9, 7024–7033.

    CAS  Google Scholar 

  24. Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073.

    CAS  Google Scholar 

  25. Lee, Y. R.; Jang, M. S.; Cho, H. Y.; Kwon, H. J.; Kim, S.; Ahn, W. S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280.

    CAS  Google Scholar 

  26. Jiang, X.; He, S. S.; Han, G.; Long, J.; Li, S. W.; Lau, C. H.; Zhang, S.; Shao, L. Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Appl. Mater. Interfaces 2021, 13, 11296–11305.

    CAS  Google Scholar 

  27. Balachandran, Y. L.; Li, X. Y.; Jiang, X. Y. Integrated microfluidic synthesis of aptamer functionalized biozeolitic imidazolate framework (BioZIF-8) targeting lymph node and tumor. Nano Lett. 2021, 21, 1335–1344.

    CAS  Google Scholar 

  28. Qiu, J. G.; Tomeh, M. A.; Jin, Y.; Zhang, B.; Zhao, X. B. Microfluidic formulation of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer. J. Colloid Interface Sci. 2023, 642, 810–819.

    CAS  Google Scholar 

  29. Kolmykov, O.; Commenge, J. M.; Alem, H.; Girot, E.; Mozet, K.; Medjahdi, G.; Schneider, R. Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater. Des. 2017, 122, 31–41.

    CAS  Google Scholar 

  30. Jian, M. P.; Liu, B.; Liu, R. P.; Qu, J. H.; Wang, H. T.; Zhang, X. W. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 2015, 5, 48433–48441.

    CAS  Google Scholar 

  31. Yamamoto, D.; Maki, T.; Watanabe, S.; Tanaka, H.; Miyahara, M. T.; Mae, K. Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chem. Eng. J. 2013, 227, 145–150.

    CAS  Google Scholar 

  32. Liu, X.; Yi, Q. L.; Han, Y. Z.; Liang, Z. N.; Shen, C. H.; Zhou, Z. Y.; Sun, J. L.; Li, Y. Z.; Du, W. B.; Cao, R. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures. Angew. Chem., Int. Ed. 2015, 59, 1846–1850.

    Google Scholar 

  33. Han, Z. W.; Lv, W. X.; Li, Y. K.; Chang, J. Q.; Zhang, W.; Liu, C.; Sun, J. S. Improving tumor targeting of exosomal membrane-coated polymeric nanoparticles by conjugation with aptamers. ACS Appl. Bio Mater. 2020, 3, 2666–2673.

    CAS  Google Scholar 

  34. Zhang, L.; Feng, Q.; Wang, J. L.; Zhang, S.; Ding, B. Q.; Wei, Y. J.; Dong, M. D.; Ryu, J. Y.; Yoon, T. Y.; Shi, X. H. et al. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: Understanding flexibility-regulated cell-nanoparticle interaction. ACS Nano 2015, 9, 9912–9921.

    CAS  Google Scholar 

  35. Liu, C.; Zhang, W.; Li, Y. K.; Chang, J. Q.; Tian, F.; Zhao, F. H.; Ma, Y.; Sun, J. S. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett. 2019, 19, 7836–7844.

    CAS  Google Scholar 

  36. Patil, S. F.; Borhade, A. V.; Nath, M. Diffusivity of zinc and cobalt ions in aqueous electrolyte solutions. Appl. Radiat. Isot. 1994, 45, 1–3.

    CAS  Google Scholar 

  37. Tan, J. C.; Bennett, T. D.; Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2010, 107, 9938–9943.

    CAS  Google Scholar 

  38. Squires, T. M.; Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977–1026.

    CAS  Google Scholar 

  39. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. Crystengcomm 2013, 15, 1794–1801.

    CAS  Google Scholar 

  40. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

    CAS  Google Scholar 

  41. Wang, K.; Qian, M. P.; Qi, H. L.; Gao, Q.; Zhang, C. X. Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. Nanoscale 2020, 12, 15663–15669.

    CAS  Google Scholar 

  42. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.

    CAS  Google Scholar 

  43. Linnane, E.; Haddad, S.; Melle, F.; Mei, Z. H.; Fairen-Jimenez, D. The uptake of metal-organic frameworks: A journey into the cell. Chem. Soc. Rev. 2022, 51, 6065–6086.

    CAS  Google Scholar 

  44. Min, Y. Z.; Roche, K. C.; Tian, S. M.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S. J.; Herring, L. E.; Zhang, L. Z.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882.

    CAS  Google Scholar 

  45. Wculek, S. K.; Cueto, F. J.; Mujal, A. M.; Melero, I.; Krummel, M. F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24.

    CAS  Google Scholar 

  46. Turubanova, V. D.; Balalaeva, I. V.; Mishchenko, T. A.; Catanzaro, E.; Alzeibak, R.; Peskova, N. N.; Efimova, I.; Bachert, C.; Mitroshina, E. V.; Krysko, O. et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J. Immunother. Cancer 2019, 7, 350.

    Google Scholar 

  47. Dearman, R. J.; Cumberbatch, M.; Maxwell, G.; Basketter, D. A.; Kimber, I. Toll-like receptor ligand activation of murine bone marrow-derived dendritic cells. Immunology 2009, 126, 475–484.

    CAS  Google Scholar 

  48. Yamada, H.; Arai, T.; Endo, N.; Yamashita, K.; Fukuda, K.; Sasada, M.; Uchiyama, T. LPS-induced ROS generation and changes in glutathione level and their relation to the maturation of human monocyte-derived dendritic cells. Life Sci. 2006, 78, 926–933.

    CAS  Google Scholar 

  49. Kantengwa, S.; Jornot, L.; Devenoges, C.; Nicod, L. P. Superoxide anions induce the maturation of human dendritic cells. Am. J. Respir. Crit. Care Med. 2003, 167, 431–437.

    Google Scholar 

  50. Xu, M. R.; Hu, Y.; Ding, W. P.; Li, F. F.; Lin, J.; Wu, M.; Wu, J. J.; Wen, L. P.; Qiu, B. S.; Wei, P. F. et al. Rationally designed rapamycin-encapsulated ZIF-8 nanosystem for overcoming chemotherapy resistance. Biomaterials 2020, 258, 120308.

    CAS  Google Scholar 

  51. Hoop, M.; Walde, C. F.; Riccò, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X. Z.; deMello, A. J.; Doonan, C. J.; Falcaro, P.; Nelson, B. J. et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13–21.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2020YFA0210800 and 2021YFA0909400), the National Natural Science Foundation of China (Nos. 22025402, 22227805, T2222008, and 22174030), The Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36020300), and CAS Project for Young Scientists in Basic Research (No. YSBR-036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziwei Han, Qiang Feng or Jiashu Sun.

Electronic supplementary material

12274_2023_6213_MOESM1_ESM.pdf

Electronic Supplementary Material: Microfluidic one-step, aqueous synthesis of size-tunable zeolitic imidazolate framework-8 for protein delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, W., Han, Z., Dong, S. et al. Microfluidic one-step, aqueous synthesis of size-tunable zeolitic imidazolate framework-8 for protein delivery. Nano Res. 16, 13409–13418 (2023). https://doi.org/10.1007/s12274-023-6213-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6213-x

Keywords

Navigation