Skip to main content
Log in

Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nitrate (NO3), a nitrogen-containing pollutant, is prevalent in aqueous solutions, contributing to a range of environmental and health-related issues. The electrocatalytic reduction of NO3 holds promise as a sustainable approach to both eliminating NO3 and generating valuable ammonia (NH3). Nevertheless, the reduction reaction of NO3 (NO3RR), involving 8-electron transfer process, is intricate, necessitating highly efficient electrocatalysts to facilitate the conversion of NO3 to NH3. In this study, Fedoped Co3O4 nanowire strutted three-dimensional (3D) pinewood-derived carbon (Fe-Co3O4/PC) is proposed as a high-efficiency NO3RR electrocatalyst for NH3 production. Operating within 0.1 M NaOH containing NO3, Fe-Co3O4/PC demonstrates exceptional performance, obtain an impressively large NH3 yield of 0.55 mmol·h−1·cm−2 and an exceptionally high Faradaic efficiency of 96.5% at −0.5 V, superior to its Co3O4/PC counterpart (0.2 mmol·h−1·cm−2, 73.3%). Furthermore, the study delves into the reaction mechanism of Fe-Co3O4 for NO3RR through theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Liang, J.; Li, Z. X.; Zhang, L. C.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Yan, H.; Ying, B. W. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 1768–1827.

    CAS  Google Scholar 

  2. Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

    Google Scholar 

  3. Yue, L. C.; Song, W.; Zhang, L. X.; Luo, Y. L.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Zheng, D. D.; Liu, Q. et al. Recent Advance in heterogenous electrocatalysts for highly selective nitrite reduction to ammonia under ambient condition. Small Struct., in press, DOI: https://doi.org/10.1002/sstr.202300168.

  4. Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

    Google Scholar 

  5. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges, and perspectives. Nano Res. 2019, 12, 1229–1249.

    CAS  Google Scholar 

  6. Liu, Q.; Lin, Y. T.; Gu, S.; Cheng, Z. Q.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S. et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Res. 2022, 15, 7134–7138.

    ADS  CAS  Google Scholar 

  7. Wu, Q. L.; Sun, Y.; Zhao, Q.; Li, H.; Ju, Z. N.; Wang, Y.; Sun, X. D.; Jia, B. H.; Qiu, J. S.; Ma, T. Y. Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: Proton donation effect of phosphorus dopants. Nano Res. 2023, 16, 4574–4581.

    ADS  CAS  Google Scholar 

  8. Wang, J.; Nan, H. F.; Tian, Y.; Chu, K. FeMo3S4 for efficient nitrogen reduction reaction. ACS Sustainable Chem. Eng. 2020, 8, 12733–12740.

    CAS  Google Scholar 

  9. Ouyang, L.; Liang, J.; Luo, Y. S.; Zheng, D. D.; Sun, S. J.; Liu, Q.; Hamdy, M. S.; Sun, X. P.; Ying, B. W. Recent advances in electrocatalytic ammonia synthesis. Chin. J. Catal. 2023, 50, 6–44.

    CAS  Google Scholar 

  10. Guo, Y.; Gu, J. X.; Zhang, R.; Zhang, S. C.; Li, Z.; Zhao, Y. W.; Huang, Z. D.; Fan, J.; Chen, Z. F.; Zhi, C. Y. Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 2021, 11, 2101699.

    CAS  Google Scholar 

  11. Sun, H.; Yin, H. Q.; Shi, W. X.; Yang, L. L.; Guo, X. W.; Lin, H.; Zhang, J. W.; Lu, T. B.; Zhang, Z. M. Porous α-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res. 2022, 15, 3026–3033.

    ADS  CAS  Google Scholar 

  12. Liu, G. H.; Niu, L. J.; Ma, Z. X.; An, L.; Qu, D.; Wang, D. D.; Wang, X. Y.; Sun, Z. C. Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions. Nano Res. 2022, 15, 5940–5945.

    ADS  CAS  Google Scholar 

  13. Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.

    ADS  CAS  Google Scholar 

  14. Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610.1622.

  15. Yin, H. Q.; Yang, L. L.; Sun, H.; Wang, H.; Wang, Y. J.; Zhang, M.; Lu, T. B.; Zhang, Z. M. W/Mo-polyoxometalate-derived electrocatalyst for high-efficiency nitrogen fixation. Chin. Chem. Lett. 2023, 34, 107337.

    CAS  Google Scholar 

  16. Zhang, W.; Li, W. T.; Wu, Q. L.; Zhao, Q.; He, X. J.; Liu, D. L.; Jia, B. H.; Qiu, J. S.; Ma, T. Y.; Sun, Y. Architecting bismuth molybdate nanoparticles with abundant oxygen vacancies and high bismuth concentration for efficient N2 electroreduction to NH3. Adv. Mater. Interfaces 2023, 10, 2202019.

    CAS  Google Scholar 

  17. Yao, D. Z.; Tang, C.; Li, L. Q.; Xia, B. Q.; Vasileff, A.; Jin, H. Y.; Zhang, Y. Z.; Qiao, S. Z. In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction. Adv. Energy Mater. 2020, 10, 2001289

    CAS  Google Scholar 

  18. Du, K.; Lang, X. Y.; Yang, Y. Y.; Cheng, C. Q.; Lan, N.; Qiu, K. W.; Mao, J.; Wang, W. C.; Ling, T. Hydrogen-assisted activation of N2 molecules on atomic steps of ZnSe nanorods. Nano Res. 2023, 16, 6721–6727.

    ADS  CAS  Google Scholar 

  19. Li, L. Q.; Tang, C.; Jin, H. Y.; Davey, K.; Qiao, S. Z. Main-group elements boost electrochemical nitrogen fixation. Chem 2021, 7, 3232–3255.

    CAS  Google Scholar 

  20. Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3-x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

    ADS  CAS  Google Scholar 

  21. Chen, J.; He, X.; Zhao, D. L.; Li, J.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Liu, Q.; Xie, L. S. et al. Greatly enhanced electrochemical nitrate-to-ammonia conversion over an Fe-doped TiO2 nanoribbon array. Green Chem. 2022, 24, 7913–7917.

    CAS  Google Scholar 

  22. Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.

    CAS  Google Scholar 

  23. Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

    CAS  Google Scholar 

  24. Zhao, Z. W.; Chen, Y.; Liu, Y.; Zhao, Y. L.; Zhang, Z. J.; Zhang, K.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Atomic catalyst supported on oxygen defective mxenes for synergetic electrocatalytic nitrate reduction to ammonia: A first principles study. Appl. Surf. Sci. 2023, 614, 156077.

    CAS  Google Scholar 

  25. Luo, Y. J.; Chen, K.; Wang, G. H.; Zhang, G. K.; Zhang, N. N.; Chu, K. Ce-doped MoS2-x nanoflower arrays for electrocatalytic nitrate reduction to ammonia. Inorg. Chem. Front. 2023, 10, 1543–1551.

    CAS  Google Scholar 

  26. Zhang, Z. J.; Liu, Y.; Su, X. Z.; Zhao, Z. W.; Mo, Z. K.; Wang, C. Y.; Zhao, Y. L.; Chen, Y.; Gao, S. Y. Electro-triggered joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Res. 2023, 16, 6632–6641.

    ADS  CAS  Google Scholar 

  27. Wang, S. T.; Liu, Y.; Zhang, K.; Gao, S. Y. Self-powered electrocatalytic nitrate to ammonia driven by lightweight triboelectric nanogenerators for wind energy harvesting. Nano Energy 2023, 112, 108434.

    CAS  Google Scholar 

  28. Song, W.; Yue, L. C.; Fan, X. Y.; Luo, Y. S.; Ying, B. W.; Sun, S. J.; Zheng, D. D.; Liu, Q.; Hamdy, M. S.; Sun, X. P. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg. Chem. Front. 2023, 10, 3489–3514.

    CAS  Google Scholar 

  29. Zhang, N. N.; Zhang, G. K.; Shen, P.; Zhang, H.; Ma, D. W.; Chu, K. Lewis acid Fe-V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2211537.

    CAS  Google Scholar 

  30. Yang, M. S.; Wei, T. R.; He, J.; Liu, Q.; Feng, L. G.; Li, H. Y.; Luo, J.; Liu, X. J. Au nanoclusters anchored on TiO2 nanosheets for highefficiency electroreduction of nitrate to ammonia. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5997-z.

  31. Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

    ADS  CAS  Google Scholar 

  32. Gruber, N.; Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

    ADS  CAS  PubMed  Google Scholar 

  33. Kanter, D. R.; Chodos, O.; Nordland, O.; Rutigliano, M.; Winiwarter, W. Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. 2020, 3, 956–963.

    Google Scholar 

  34. Liu, J. X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 2019, 9, 7052–7064.

    CAS  Google Scholar 

  35. Carvalho, O. Q.; Marks, R.; Nguyen, H. K. K.; Vitale-Sullivan, M. E.; Martinez, S. C.; Arnadottir, L.; Stoerzinger, K. A. Role of electronic structure on nitrate reduction to ammonium: A periodic journey. J. Am. Chem. Soc. 2022, 144, 14809–14818.

    CAS  PubMed  Google Scholar 

  36. Fan, X. Y.; Ma, C. Q.; Zhao, D. L.; Deng, Z. Q.; Zhang, L. C.; Wang, Y.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Zhang, J. et al. Unveiling selective nitrate reduction to ammonia with Co3O4 nanosheets/TiO2 nanobelt heterostructure catalyst. J. Colloid Interface Sci. 2023, 630, 714–720.

    ADS  CAS  PubMed  Google Scholar 

  37. Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoOx nanosheets. ACS Catal. 2021, 11, 15135–15140.

    CAS  Google Scholar 

  38. Fu, W. Y.; Du, X. D.; Su, P.; Zhang, Q. Z.; Zhou, M. H. Synergistic effect of Co(III) and Co(II) in a 3D structured Co3O4/carbon felt electrode for enhanced electrochemical nitrate reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 28348–28358.

    CAS  PubMed  Google Scholar 

  39. Zhang, M. L.; Song, K. P.; Liu, C.; Zhang, Z. D.; He, W. Q.; Huang, H.; Liu, J. L. Electron-rich Au nanocrystals/Co3O4 interface for enhanced electrochemical nitrate reduction into ammonia. J. Colloid Interface Sci. 2023, 650, 193–202.

    ADS  CAS  PubMed  Google Scholar 

  40. Li, K.; Chen, C.; Bian, X. C.; Sun, T. H.; Jia, J. P. Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim. Acta 2020, 362, 137121.

    CAS  Google Scholar 

  41. Deng, Z. Q.; Ma, C. Q.; Li, Z. R.; Luo, Y. S.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Du, J.; Lu, Q. P.; Zheng, B. Z. et al. High-efficiency electrochemical nitrate reduction to ammonia on a Co3O4 nanoarray catalyst with cobalt vacancies. ACS Appl. Mater. Interfaces 2022, 14, 46595–46602.

    CAS  PubMed  Google Scholar 

  42. Li, B.; Xue, P. F.; Bai, Y.; Tang, Q.; Qiao, M.; Zhu, D. D. Coupling Cu doping and oxygen vacancies in Co3O4 for efficient electrochemical nitrate conversion to ammonia. Chem. Commun. 2023, 59, 5086–5089.

    CAS  Google Scholar 

  43. Fan, X. Y.; Liu, C. Z.; Li, Z. X.; Cai, Z. W.; Ouyang, L.; Li, Z. R.; He, X.; Luo, Y. S.; Zheng, D. D.; Sun, S. J. et al. Pd-doped Co3O4 nanoarray for efficient eight-electron nitrate electrocatalytic reduction to ammonia synthesis. Small, in press, DOI: https://doi.org/10.1002/smll.202303424.

  44. Kim, K.; Zagalskaya, A.; Ng, J. L.; Hong, J.; Alexandrov, V.; Pham, T. A.; Su, X. Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nat. Commun. 2023, 14, 823.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao, Y.; Chen, S.; Yue, Q.; Kang, Y. J. Optimizing the spin states of mesoporous Co3O4 nanorods through vanadium doping for longlasting and flexible rechargeable Zn-Air batteries. ACS Catal. 2021, 11, 8097–8103.

    CAS  Google Scholar 

  46. Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

    CAS  Google Scholar 

  47. Peng, X. W.; Zhang, L.; Chen, Z. X.; Zhong, L. X.; Zhao, D. K.; Chi, X.; Zhao, X. X.; Li, L. G.; Lu, X. H.; Leng, K. et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 2019, 31, 1900341.

    Google Scholar 

  48. Li, D.; Cheng, H.; Hao, X. X.; Yu, G. P.; Qiu, C. T.; Xiao, Y. J.; Huang, H. B.; Lu, Y. Y.; Zhang, B. Wood-derived freestanding carbon-based electrode with hierarchical structure for industrial-level hydrogen production. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202304917.

  49. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    ADS  CAS  Google Scholar 

  50. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    ADS  CAS  Google Scholar 

  51. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    ADS  CAS  PubMed  Google Scholar 

  52. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    ADS  MathSciNet  Google Scholar 

  53. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    CAS  Google Scholar 

  54. Li, Y. E.; Zhu, W. X.; Fu, X.; Zhang, Y.; Wei, Z. Y.; Ma, Y. Y.; Yue, T. L.; Sun, J.; Wang, J. L. Two-dimensional zeolitic imidazolate framework-l-derived iron-cobalt oxide nanoparticlecomposed nanosheet array for water oxidation. Inorg. Chem. 2019, 58, 6231–6237.

    CAS  PubMed  Google Scholar 

  55. He, X.; Li, Z. X.; Yao, J.; Dong, K.; Li, X. H.; Hu, L.; Sun, S. J.; Cai, Z. W.; Zheng, D. D.; Luo, Y. S. et al. High-efficiency electrocatalytic nitrite reduction toward ammonia synthesis on CoP@TiO2 nanoribbon array. iScience 2023, 26, 107100.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cong, L. D.; Zhang, S. C.; Zhu, H. Y.; Chen, W. X.; Huang, X. Y.; Xing, Y. L.; Xia, J.; Yang, P. H.; Lu, X. Structure-design and theoretical-calculation for ultrasmall Co3O4 anchored into ionic liquid modified graphene as anode of flexible lithium-ion batteries. Nano Res. 2022, 15, 2104–2111.

    ADS  CAS  Google Scholar 

  57. He, X.; Li, X. H.; Fan, X. Y.; Li, J.; Zhao, D. L.; Zhang, L. C.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Xie, L. S. et al. Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets. ACS Appl. Nano Mater. 2022, 5, 14246–14250.

    CAS  Google Scholar 

  58. Ao, K. L.; Zhang, X. Y.; Nazmutdinov, R. R.; Wang, D.; Shi, J. H.; Yue, X.; Sun, J. G.; Schmickler, W.; Daoud, W. A. Hierarchical CoFe@N-doped carbon decorated wood carbon as bifunctional cathode in wearable Zn-Air battery. Energy Environ. Mater., in press, DOI: https://doi.org/10.1002/eem2.12499.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Gong or Xuping Sun.

Electronic Supplementary Material

12274_2023_6204_MOESM1_ESM.pdf

Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, C., He, X. et al. Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction. Nano Res. 17, 2276–2282 (2024). https://doi.org/10.1007/s12274-023-6204-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6204-y

Keywords

Navigation