Skip to main content
Log in

An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, three-dimensional (3D) conductive frameworks have been chosen as the host for composite lithium (Li) metal anode because of their exceptional electrical conductivity and remarkable thermal and electrochemical stability. However, Li tends to accumulate on the top of the 3D frameworks with homogenous lithiophilicity and Li dendrite still growth. This work firstly designed a bimetallic metal-organic framework (MOF) (CuMn-MOF) derived Cu2O and Mn3O4 nanoparticles decorated carbon cloth (CC) substrates (CC@Cu2O/Mn3O4) to fabricate a composite Li anode. Thanks to the synergistic effects of lithiophilic Cu2O and Mn3O4, the CC@Cu2O/Mn3O4@Li symmetrical cell can afford a prolonged cycling lifespan (1400 h) under an ultrahigh current density and areal capacity (6 mA·cm−2/6 mAh·cm−2). When coupled with the LiFePO4 (LFP) cathode, the LFP∥CC@Cu2O/Mn3O4@Li full cell demonstrated a superior performance of 89.7 mAh·g−1 even at an extremely high current density (10 C). Furthermore, it can also be matched well with LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode. Importantly, to explain the excellent performances of the CC@Cu2O/Mn3O4@Li composite anode, an intermittent model was also proposed. This study offers a novel model that can enhance our comprehension of the Li deposition behavior and pave the way to attain stable and safe Li metal anodes by employing bimetallic MOF-derived materials to construct 3D frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y.; Ding, Y.; Li, Y. T.; Peng, L. L.; Byon, H. R.; Goodenough, J. B.; Yu, G. H. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968–7996.

    CAS  PubMed  Google Scholar 

  2. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    CAS  Google Scholar 

  3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    CAS  PubMed  ADS  Google Scholar 

  4. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    CAS  PubMed  Google Scholar 

  5. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    CAS  PubMed  ADS  Google Scholar 

  6. Li, L.; Basu, L.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J.; Shi, Y. F.; Narayanan, S.; Koratkar, J. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

    CAS  PubMed  ADS  Google Scholar 

  7. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

    CAS  Google Scholar 

  8. Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.

    Google Scholar 

  9. Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

    Google Scholar 

  10. Zhu, W. H.; Deng, W.; Zhao, F.; Liang, S. S.; Zhou, X. F.; Liu, Z. P. Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. Energy Storage Mater. 2019, 21, 107–114.

    Google Scholar 

  11. Wei, T.; Zhou, Y. Y.; Sun, C.; Liu, L. S.; Wang, S. J.; Wang, M. T.; Liu, Y.; Huang, Q.; Zhuang, Q. C.; Tang, Y. F. Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode. Particuology 2024, 84, 89–97.

    CAS  Google Scholar 

  12. Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

    CAS  Google Scholar 

  13. Zhao, J.; Sun, J.; Pei, A.; Zhou, G. M.; Yan, K.; Liu, Y. Y.; Lin, D. C.; Cui, Y. A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Mater. 2018, 10, 275–281.

    Google Scholar 

  14. Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem. Rev. 2016, 1, 287–297.

    CAS  Google Scholar 

  15. Yun, J.; Park, B. K.; Won, E. S.; Choi, S. H.; Kang, H. C.; Kim, J. H.; Park, M. S.; Lee, J. W. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Lett. 2020, 5, 3108–3114.

    CAS  Google Scholar 

  16. Yan, X. L.; Zhang, Q. F.; Xu, W. J.; Xie, Q. S.; Liu, P. F.; Chen, Q. L.; Zheng, H. F.; Wang, L. S.; Zhu, Z.; Peng, D. L. Bottom–top channeling Li nucleation and growth by a gradient lithiophilic 3D conductive host for highly stable Li-metal anodes. J. Mater. Chem. A 2020, 8, 1678–1686.

    CAS  Google Scholar 

  17. Shang, X. N.; Li, X. W.; Yue, H. W.; Xue, S.; Liu, Z. J.; Hou, X. Y.; He, D. Y. Interconnected porous NiO@MnO2 nanosheets as anodes with excellent rate capability for lithium-ion batteries. Mater. Lett. 2015, 157, 7–10.

    CAS  Google Scholar 

  18. Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R. Y.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.

    Google Scholar 

  19. Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

    CAS  PubMed  Google Scholar 

  20. Liu, B.; Zhang, Y.; Pan, G. X.; Ai, C. Z.; Deng, S. J.; Liu, S. F.; Liu, Q.; Wang, X. L.; Xia, X. H.; Tu, J. P. Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes. J. Mater. Chem. A 2019, 7, 21794–21801.

    CAS  Google Scholar 

  21. Zhang, Q.; Wang, S. J.; Liu, Y.; Wang, M. T.; Chen, R. T.; Zhu, Z. Y.; Qiu, X. Y.; Xu, S. D.; Wei, T. UiO-66-NH2@67 core–shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries. Energy Technol. 2023, 11, 2201438.

    CAS  Google Scholar 

  22. Wang, L. Y.; Zhu, X. Y.; Guan, Y. P.; Zhang, J. L.; Ai, F.; Zhang, W. F.; Xiang, Y.; Vijayan, S.; Li, G. D.; Huang, Y. Q. et al. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes. Energy Storage Mater. 2018, 11, 191–196.

    Google Scholar 

  23. Yu, B. Z.; Tao, T.; Mateti, S.; Lu, S. G.; Chen, Y. Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 2018, 28, 1803023.

    Google Scholar 

  24. Jiang, G. Y.; Jiang, N.; Zheng, N.; Chen, X.; Mao, J. Y.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. MOF-derived porous Co3O4−NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 2019, 23, 181–189.

    Google Scholar 

  25. Wei, T.; Lu, J. H.; Zhang, P.; Yang, G.; Sun, C.; Zhou, Y. Y.; Zhuang, Q. C.; Tang, Y. F. Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chin. Chem. Lett. 2023, 34, 107947.

    CAS  Google Scholar 

  26. Wei, T.; Lu, J. H.; Wang, M. T.; Sun, C.; Zhang, Q.; Wang, S. J.; Zhou, Y. Y.; Chen, D. F.; Lan, Y. Q. MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review. Chin. J. Chem. 2023, 41, 1861–1874.

    CAS  Google Scholar 

  27. Hou, Y. P.; Wang, L. Y.; Chen, G. H.; Liu, Y. F.; Miao, X.; Wu, G. Q.; Cao, Z. Z.; Zhang, Y. F. Core–shell copper-manganese oxide nanoparticles synthesized from a copper-manganese metal-organic framework with pyromellitic acid as ligand for lithium-ion battery anode. Ionics 2022, 28, 3719–3729.

    CAS  Google Scholar 

  28. Li, W. F.; Peng, D. L.; Huang, W. X.; Zhang, X. S.; Hou, Z. P.; Zhang, W. L.; Lin, B. X.; Xing, Z. Y. Adjusting coherence length of expanded graphite by self-activation and its electrochemical implication in potassium ion battery. Carbon 2023, 204, 315–324.

    CAS  Google Scholar 

  29. Cheng, L.; Ma, C. H.; Lu, W. Q.; Wang, X.; Yue, H. J.; Zhang, D.; Xing, Z. Y. A graphitized hierarchical porous carbon as an advanced cathode host for alkali metal-selenium batteries. Chem. Eng. J. 2022, 433, 133527.

    CAS  Google Scholar 

  30. Xing, Z. Y.; Wang, B.; Halsted, J. K.; Subashchandrabose, R.; Stickle, W. F.; Ji, X. L. Direct fabrication of nanoporous graphene from graphene oxide by adding a gasification agent to a magnesiothermic reaction. Chem. Comm. 2015, 51, 1969–1971.

    CAS  PubMed  Google Scholar 

  31. Sun, D.; Tang, Y. G.; Ye, D. L.; Yan, J.; Zhou, H. S.; Wang, H. Y. Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 5254–5262.

    CAS  PubMed  Google Scholar 

  32. Wei, T.; Zhang, Z. H.; Zhang, Q.; Lu, J. H.; Xiong, Q. M.; Wang, F. Y.; Zhou, X. P.; Zhao, W. J.; Qiu, X. Y. Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int. J. Miner. Metall. Mater. 2021, 28, 1636–1646.

    CAS  Google Scholar 

  33. Wei, T.; Wang, Z. M.; Zhang, M.; Zhang, Q.; Lu, J. H.; Zhou, Y. Y.; Sun, C.; Yu, Z. D.; Wang, Y.; Qiao, M. et al. Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Mater. Today Commun. 2022, 31, 103518.

    CAS  Google Scholar 

  34. Zhang, Q.; Wei, T.; Lu, J. H.; Sun, C.; Zhou, Y. Y.; Wang, M. T.; Liu, Y.; Xiao, B. B.; Qiu, X. Y.; Xu, S. D. The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries. J. Electroanal. Chem. 2022, 926, 116935.

    CAS  Google Scholar 

  35. Lu, J. H.; Wang, Z. M.; Zhang, Q.; Sun, C.; Zhou, Y. Y.; Wang, S. J.; Qiu, X. Y.; Xu, S. D.; Chen, R. T.; Wei, T. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries. Chin. J. Chem. Eng. 2023, 60, 80–89.

    Google Scholar 

  36. Liu, X. F.; Xie, D.; Tao, F. Y.; Diao, W. Y.; Yang, J. L.; Luo, X. X.; Li, W. L.; Wu, X. L. Regulating the Li nucleation/growth behavior via Cu2O nanowire array and artificial solid electrolyte interphase toward highly stable Li metal anode. ACS Appl. Mater. Interfaces 2022, 14, 23588–23596.

    CAS  Google Scholar 

  37. Zhang, C.; Lyu, R. Y.; Lv, W.; Li, H.; Jiang, W.; Li, J.; Gu, S. C.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B. et al. A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 2019, 31, 1904991.

    CAS  Google Scholar 

  38. Pu, J.; Li, J. C.; Zhang, K.; Zhang, T.; Li, C. W.; Ma, H. X.; Zhu, J.; Braun, P. V.; Lu, J.; Zhang, H. G. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 2019, 10, 1896.

    PubMed  PubMed Central  ADS  Google Scholar 

  39. Zhao, Y. L.; Wang, L. P.; Zou, J.; Ran, Q. W.; Li, L.; Chen, P. Y.; Yu, H. L.; Gao, J.; Niu, X. B. Bottom-up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode. J. Energy Chem. 2022, 65, 666–673.

    CAS  Google Scholar 

  40. Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 2018, 9, 3729.

    PubMed  PubMed Central  ADS  Google Scholar 

  41. Zhou, J. H.; Wu, F.; Wei, G. L.; Hao, Y. T.; Mei, Y.; Li, L.; Xie, M.; Chen, R. J. Lithium-metal host anodes with top-to-bottom lithiophilic gradients for prolonged cycling of rechargeable lithium batteries. J. Power Sources 2021, 495, 229773.

    CAS  Google Scholar 

  42. Nan, Y.; Li, S. M.; Shi, Y. Z.; Yang, S. B.; Li, B. Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode. Small 2019, 15, 1903520.

    CAS  Google Scholar 

  43. Zhang, Y. B.; Yu, J. K.; Ren, K. X.; Zuo, J. L.; Ding, J. X.; Chen, X. S. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 2019, 20, 1478–1492.

    CAS  PubMed  Google Scholar 

  44. Guan, W. Q.; Hu, X. Q.; Liu, Y. H.; Sun, J. M.; He, C.; Du, Z. Z.; Bi, J. X.; Wang, K.; Ai, W. Advances in the emerging gradient designs of Li metal hosts. Research 2022, 2022, 9846537.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Liu, X. H.; Qian, X. J.; Tang, W. Q.; Luo, H.; Zhao, Y.; Tan, R.; Qiao, M.; Gao, X. L.; Hua, Y.; Wang, H. Z. et al. Designer uniform Li plating/stripping through lithium-cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. J. Energy Chem. 2021, 52, 385–392.

    CAS  Google Scholar 

  46. Qin, L. G.; Wu, Y. C.; Shen, M. Y.; Song, B. R.; Li, Y. H.; Sun, S. Q.; Zhang, H. Y.; Liu, C. F.; Chen, J. Straining copper foils to regulate the nucleation of lithium for stable lithium metal anode. Energy Storage Mater. 2022, 44, 278–284.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21701083 and 22279112), Fok Ying-Tong Education Foundation of China (No. 171064), and the Natural Science Foundation of Hebei Province (Nos. B2022203018 and B2018203297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wei, Daifen Chen or Yongfu Tang.

Electronic Supplementary Material

12274_2023_6187_MOESM1_ESM.pdf

An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities

Supplementary material, approximately 14.5 MB.

Supplementary material, approximately 22.4 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Zhou, Y., Sun, C. et al. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 17, 2763–2769 (2024). https://doi.org/10.1007/s12274-023-6187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6187-8

Keywords

Navigation