Skip to main content
Log in

Interactions to plasm protein and application potentials of carbon nanotubes in blood-contacting medical devices

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have been largely investigated in various biomedical fields on the basis of their excellent physical properties and drug delivery performance. However, application capacities of CNTs in blood-contacting medical devices are given due attention though there have been increasingly accumulated experimental data showing promising potentials. Herein, we collected and showed research evidence that strong interactions of CNTs to plasm proteins are attractive and valuable features holding great application potentials for medical devices and implants used in blood-contacting environments, while blood compatibility has been a big challenge faced by this kind of devices. This review introduces the strong and nonspecific plasm protein adsorptions of CNTs due to their high purity of carbon composition and nanostructures, followed by discussions on the implication of these interactions to blood coagulation and complement activation, aiming to sort out and provide insights into the application potentials of CNTs in blood-contacting medical devices and implants in the context of anti-thrombosis and blood purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703.

    CAS  Google Scholar 

  2. Wepasnick, K. A.; Smith, B. A.; Schrote, K. E.; Wilson, H. K.; Diegelmann, S. R.; Fairbrother, D. H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 2011, 49, 24–36.

    CAS  Google Scholar 

  3. Gao, L. Z.; Nie, L.; Wang, T. H.; Qin, Y. J.; Guo, Z. X.; Yang, D. L.; Yan, X. Y. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem 2006, 7, 239–242.

    CAS  Google Scholar 

  4. Singh, A.; Hsu, M. H.; Gupta, N.; Khanra, P.; Kumar, P.; Verma, V. P.; Kapoor, M. Derivatized carbon nanotubes for gene therapy in mammalian and plant cells. ChemPlusChem 2020, 85, 466–475.

    CAS  Google Scholar 

  5. Zhang, Y.; Bai, Y. H.; Yan, B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discovery Today 2010, 15, 428–435.

    CAS  Google Scholar 

  6. Hosseini, S. M.; Mohammadnejad, J.; Najafi-Taher, R.; Zadeh, Z. B.; Tanhaei, M.; Ramakrishna, S. Multifunctional carbon-based nanoparticles: Theranostic applications in cancer therapy and diagnosis. ACS Appl. Bio Mater. 2023, 6, 1323–1338.

    CAS  Google Scholar 

  7. Xu, H. Y.; Meng, J.; Kong, H. What are carbon nanotubes’ roles in anti-tumor therapies.. Sci. China Chem. 2010, 53, 2250–2256.

    CAS  Google Scholar 

  8. Zhao, X.; Guo, B. L.; Wu, H.; Liang, Y. P.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784.

    Google Scholar 

  9. Horbett, T. A. Chapter II.1.2 - adsorbed proteins on biomaterials. In Biomaterials Science. 3rd ed. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Eds.;. Academic Press: Cambridge 2013, pp 394–408.

    Google Scholar 

  10. Ouassil, N.; Pinals, R. L.; Bonis-O’Donnell, J. T. D.; Wang, J. W.; Landry, M. P. Supervised learning model predicts protein adsorption to carbon nanotubes. Sci. Adv. 2022, 8, eabm0898.

    Google Scholar 

  11. Meng, J.; Song, L.; Xu, H. Y.; Kong, H.; Wang, C. Y.; Guo, X. T.; Xie, S. S. Effects of single-walled carbon nanotubes on the functions of plasma proteins and potentials in vascular prostheses. Nanomedicine 2005, 1, 136–142.

    CAS  Google Scholar 

  12. Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.

    CAS  Google Scholar 

  13. Zhong, J.; Meng, J.; Liang, X. Q.; Song, L.; Zhao, T.; Xie, S. S.; Ibrahim, K.; Qian, H. J.; Wang, J. O.; Guo, J. H. et al. XANES study of phenylalanine and glycine adsorption on single-walled carbon nanotubes. Mater. Lett. 2009, 63, 431–433.

    CAS  Google Scholar 

  14. Song, L.; Meng, J.; Zhong, J.; Liu, L. F.; Dou, X. Y.; Liu, D. F.; Zhao, X. W.; Luo, S. D.; Zhang, Z. X.; Xiang, Y. J. et al. Human fibrinogen adsorption onto single-walled carbon nanotube films. Colloids Surf. B: Biointerfaces 2006, 49, 66–70.

    CAS  Google Scholar 

  15. Zhong, J.; Song, L.; Meng, J.; Gao, B.; Chu, W. S.; Xu, H. Y.; Luo, Y.; Guo, J. H.; Marcelli, A.; Xie, S. S. et al. Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 2009, 47, 967–973.

    CAS  Google Scholar 

  16. Meng, J.; Song, L.; Zhong, J.; Wang, C. Y.; Kong, H.; Wu, Z. Y.; Xu, H. Y.; Xie, S. S. Comparison of adsorption behaviour for fibrinogen and albumin on single walled carbon nanotubes nonwoven. Solid State Phenom 2007, 121–123, 781–784.

    Google Scholar 

  17. Vinante, M.; Digregorio, G.; Lunelli, L.; Forti, S.; Musso, S.; Vanzetti, L.; Lui, A.; Pasquardini, L.; Giorcelli, M.; Tagliaferro, A. et al. Human plasma protein adsorption on carbon-based materials. J. Nanosci. Nanotechnol. 2009, 9, 3785–3791.

    CAS  Google Scholar 

  18. Li, D. J.; Yuan, L.; Yang, Y.; Deng, X. Y.; Lü, X. Y.; Huang, Y.; Cao, Z.; Liu, H.; Sun, X. L. Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes. Sci. China, Ser. C: Life Sci. 2009, 52, 479–482.

    CAS  Google Scholar 

  19. Yang, M.; Meng, J.; Mao, X. B.; Yang, Y.; Cheng, X. L.; Yuan, H.; Wang, C.; Xu, H. Y. Carbon nanotubes induce secondary structure changes of bovine albumin in aqueous phase. J. Nanosci. Nanotechnol. 2010, 10, 7550–7553.

    CAS  Google Scholar 

  20. Park, S. J.; Khang, D. Conformational changes of fibrinogen in dispersed carbon nanotubes. Int. J. Nanomed. 2012, 7, 4325–4333.

    CAS  Google Scholar 

  21. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.

    CAS  Google Scholar 

  22. Ke, P. C.; Lin, S. J.; Parak, W. J.; Davis, T. P.; Caruso, F. A decade of the protein corona. ACS Nano 2017, 11, 11773–11776.

    CAS  Google Scholar 

  23. Lu, N. H.; Sui, Y. H.; Tian, R.; Peng, Y. Y. Adsorption of plasma proteins on single-walled carbon nanotubes reduced cytotoxicity and modulated neutrophil activation. Chem. Res. Toxicol. 2018, 31, 1061–1068.

    CAS  Google Scholar 

  24. Chen, R.; Radic, S.; Choudhary, P.; Ledwell, K. G.; Huang, G.; Brown, J. M.; Ke, P. C. Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Appl. Phys. Lett. 2012, 101, 133702.

    Google Scholar 

  25. Lee, H. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density. J. Mol. Graphics Modell. 2017, 75, 1–8.

    CAS  Google Scholar 

  26. Vlasova, I. I.; Mikhalchik, E. V.; Barinov, N. A.; Kostevich, V. A.; Smolina, N. V.; Klinov, D. V.; Sokolov, A. V. Adsorbed plasma proteins modulate the effects of single-walled carbon nanotubes on neutrophils in blood. Nanomedicine 2016, 12, 1615–1625.

    CAS  Google Scholar 

  27. Lu, N. H.; Sui, Y. H.; Ding, Y.; Tian, R.; Peng, Y. Y. Fibrinogen binding-dependent cytotoxicity and degradation of single-walled carbon nanotubes. J. Mater. Sci.: Mater. Med. 2018, 29, 115.

    Google Scholar 

  28. Nicoletti, M.; Gambarotti, C.; Fasoli, E. Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes. J. Chromatogr. B 2021, 1163, 122504.

    CAS  Google Scholar 

  29. Pinals, R. L.; Yang, D.; Lui, A.; Cao, W.; Landry, M. P. Corona exchange dynamics on carbon nanotubes by multiplexed fluorescence monitoring. J. Am. Chem. Soc. 2020, 142, 1254–1264.

    CAS  Google Scholar 

  30. Pinals, R. L.; Yang, D.; Rosenberg, D. J.; Chaudhary, T.; Crothers, A. R.; Iavarone, A. T.; Hammel, M.; Landry, M. P. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments. Angew. Chem., Int. Ed. 2020, 59, 23668–23677.

    CAS  Google Scholar 

  31. Salvador-Morales, C.; Flahaut, E.; Sim, E.; Sloan, J.; Green, M. L. H.; Sim, R. B. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 2006, 43, 193–201.

    CAS  Google Scholar 

  32. Rybak-Smith, M. J.; Sim, R. B. Complement activation by carbon nanotubes. Adv. Drug Delivery Rev. 2011, 63, 1031–1041.

    CAS  Google Scholar 

  33. Salvador-Morales, C.; Basiuk, E. V.; Basiuk, V. A.; Green, M. L.; Sim, R. B. Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 2347–2356.

    CAS  Google Scholar 

  34. Pondman, K. M.; Pednekar, L.; Paudyal, B.; Tsolaki, A. G.; Kouser, L.; Khan, H. A.; Shamji, M. H.; Haken, B. T.; Stenbeck, G.; Sim, R. B. et al. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes. Nanomedicine 2015, 11, 2109–2118.

    CAS  Google Scholar 

  35. Saint-Cricq, M.; Carrete, J.; Gaboriaud, C.; Gravel, E.; Doris, E.; Thielens, N.; Mingo, N.; Ling, W. L. Human immune protein C1q selectively disaggregates carbon nanotubes. Nano Lett. 2017, 17, 3409–3415.

    CAS  Google Scholar 

  36. Ling, W. L.; Biro, A.; Bally, I.; Tacnet, P.; Deniaud, A.; Doris, E.; Frachet, P.; Schoehn, G.; Pebay-Peyroula, E.; Arlaud, G. J. Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 2011, 5, 730–737.

    CAS  Google Scholar 

  37. Rybak-Smith, M. J.; Tripisciano, C.; Borowiak-Palen, E.; Lamprecht, C.; Sim, R. B. Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption. J. Biomed. Nanotechnol. 2011, 7, 830–839.

    CAS  Google Scholar 

  38. Hamad, I.; Hunter, A. C.; Rutt, K. J.; Liu, Z.; Dai, H. J.; Moghimi, S. M. Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol. 2008, 45, 3797–3803.

    CAS  Google Scholar 

  39. Belime, A.; Gravel, E.; Brenet, S.; Ancelet, S.; Caneiro, C.; Hou, Y. X.; Thielens, N.; Doris, E.; Ling, W. L. Mode of PEG coverage on carbon nanotubes affects binding of innate immune protein C1q. J. Phys. Chem. B 2018, 122, 757–763.

    CAS  Google Scholar 

  40. Andersen, A. J.; Windschiegl, B.; Ilbasmis-Tamer, S.; Degim, I. T.; Hunter, A. C.; Andresen, T. L.; Moghimi, S. M. Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomedicine 2013, 9, 469–473.

    CAS  Google Scholar 

  41. Merle, N. S.; Church, S. E.; Fremeaux-Bacchi, V.; Roumenina, L. T. Complement system part I - molecular mechanisms of activation and regulation. Front. Immunol. 2015, 6, 262.

    Google Scholar 

  42. Meng, J.; Yang, M.; Jia, F. M.; Kong, H.; Zhang, W. Q.; Wang, C. Y.; Xing, J. M.; Xie, S. S.; Xu, H. Y. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology 2010, 21, 145104.

    Google Scholar 

  43. Yang, M.; Meng, J.; Cheng, X. L.; Lei, J.; Guo, H.; Zhang, W. Q.; Kong, H.; Xu, H. Y. Multiwalled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics 2012, 2, 258–270.

    Google Scholar 

  44. Goradel, N. H.; Nemati, M.; Bakhshandeh, A.; Arashkia, A.; Negahdari, B. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen. Int. Immunopharmacol. 2023, 117, 109887.

    Google Scholar 

  45. Chen, F. M.; Wang, Y. J.; Gao, J.; Saeed, M.; Li, T. L.; Wang, W. Q.; Yu, H. J. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021, 270, 120709.

    CAS  Google Scholar 

  46. Liu, L.; Gong, Y. X.; Liu, G. L.; Zhu, B.; Wang, G. X. Protective immunity of grass carp immunized with DNA vaccine against Aeromonas hydrophila by using carbon nanotubes as a carrier molecule. Fish Shellfish Immunol. 2016, 55, 516–522.

    CAS  Google Scholar 

  47. Jia, Y. J.; Guo, Z. R.; Ma, R.; Qiu, D. K.; Zhao, Z.; Wang, G. X.; Zhu, B. Immune efficacy of carbon nanotubes recombinant subunit vaccine against largemouth bass ulcerative syndrome virus. Fish Shellfish Immunol. 2020, 100, 317–323.

    CAS  Google Scholar 

  48. Feng, L.; Andrade, J. D. Protein adsorption on low temperature isotropic carbon: V. How is it related to its blood compatibility? J. Biomater. Sci., Polym. Ed. 1995, 7, 439–452.

    CAS  Google Scholar 

  49. Feng, L.; Andrade, J. D. Protein adsorption on low temperature isotropic carbon: III. Isotherms, competitivity, desorption and exchange of human albumin and fibrinogen. Biomaterials 1994, 15, 324–333.

    Google Scholar 

  50. Meng, J.; Kong, H.; Xu, H. Y.; Song, L.; Wang, C. Y.; Xie, S. S. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery. J. Biomed. Mater. Res. Part A 2005, 74A, 208–214.

    CAS  Google Scholar 

  51. Tan, D. S.; Liu, L. X.; Li, Z.; Fu, Q. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes. J. Biomed. Mater. Res. Part A 2015, 103, 2711–2719.

    CAS  Google Scholar 

  52. Koh, L. B.; Rodriguez, I.; Zhou, J. J. Platelet adhesion studies on nanostructured poly(lactic-co-glycolic-acid)-carbon nanotube composite. J. Biomed. Mater. Res. Part A 2008, 86A, 394–401.

    CAS  Google Scholar 

  53. Koh, L. B.; Rodriguez, I.; Venkatraman, S. S. A novel nanostructured poly(lactic-co-glycolic-acid)-multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies. Acta Biomater. 2009, 5, 3411–3422.

    CAS  Google Scholar 

  54. Li, Z. Q.; Zhao, X. W.; Ye, L.; Coates, P.; Caton-Rose, F.; Martyn, M. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. J. Biomater. Appl. 2014, 28, 978–989.

    Google Scholar 

  55. Endo, M.; Koyama, S.; Matsuda, Y.; Hayashi, T.; Kim, Y. A. Thrombogenicity and blood coagulation of a microcatheter prepared from carbon nanotube-nylon-based composite. Nano Lett. 2005, 5, 101–105.

    CAS  Google Scholar 

  56. Naskar, S.; Panda, A. K.; Jana, A.; Kanagaraj, S.; Basu, B. UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility. J. Biomed. Mater. Res., Part B 2020, 108, 2320–2343.

    CAS  Google Scholar 

  57. Dhandayuthapani, B.; Varghese, S. H.; Aswathy, R. G.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D. Evaluation of antithrombogenicity and hydrophilicity on Zein-SWCNT electrospun fibrous nanocomposite scaffolds. Int. J. Biomater. 2012, 2012, 345029.

    Google Scholar 

  58. Ju, J.; Liang, F. X.; Zhang, X. X.; Sun, R.; Pan, X. G.; Guan, X. Y.; Cui, G. N.; He, X.; Li, M. Y. Advancement in separation materials for blood purification therapy. Chin. J. Chem. Eng. 2019, 27, 1383–1390.

    CAS  Google Scholar 

  59. Noy, A.; Park, H. G.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29.

    Google Scholar 

  60. Liu, T. Y.; Lin, W. C.; Huang, L. Y.; Chen, S. Y.; Yang, M. C. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 2005, 26, 1437–1444.

    CAS  Google Scholar 

  61. Nica, S. L.; Zaltariov, M. F.; Pamfil, D.; Bargan, A.; Rusu, D.; Rata, D. M.; Găină, C.; Atanase, L. I. MWCNTs composites-based on new chemically modified polysulfone matrix for biomedical applications. Nanomaterials 2022, 12, 1502.

    CAS  Google Scholar 

  62. Yeh, Y. T.; Lin, Z.; Zheng, S. Y.; Terrones, M. A carbon nanotube integrated microfluidic device for blood plasma extraction. Sci. Rep. 2018, 8, 13623.

    Google Scholar 

  63. Mangukiya, S.; Prajapati, S.; Kumar, S.; Aswal, V. K.; Murthy, C. N. Polysulfone-based composite membranes with functionalized carbon nanotubes show controlled porosity and enhanced electrical conductivity. J. Appl. Polym. Sci. 2016, 133, 43778.

    Google Scholar 

  64. Verma, S. K.; Modi, A.; Bellare, J. Polyethersulfone-carbon nanotubes composite hollow fiber membranes with improved biocompatibility for bioartificial liver. Colloids Surf. B: Biointerfaces 2019, 181, 890–895.

    CAS  Google Scholar 

  65. Arahman, N.; Rosnelly, C. M.; Yusni, Y.; Fahrina, A.; Silmina, S.; Ambarita, A. C.; Bilad, M. R.; Gunawan, P.; Rajabzadeh, S.; Takagi, R. et al. Ultrafiltration of α-lactalbumin protein: Acquaintance of the filtration performance by membrane structure and surface alteration. Polymers 2021, 13, 3632.

    CAS  Google Scholar 

  66. Irfan, M.; Irfan, M.; Shah, S. M.; Baig, N.; Saleh, T. A.; Ahmed, M.; Naz, G.; Akhtar, N.; Muhammad, N.; Idris, A. Hemodialysis performance and anticoagulant activities of PVP-k25 and carboxylic-multiwall nanotube composite blended Polyethersulfone membrane. Mater. Sci. Eng.: C 2019, 103, 109769.

    CAS  Google Scholar 

  67. Irfan, M.; Irfan, M.; Idris, A.; Baig, N.; Saleh, T. A.; Nasiri, R.; Iqbal, Y.; Muhammad, N.; Rehman, F.; Khalid, H. Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nanotubes and low molecular weight polyvinylpyrrolidone based nanocomposites. J. Biomed. Mater. Res. Part A 2019, 107, 513–525.

    CAS  Google Scholar 

  68. Chen, J.; Wang, L. C.; Wang, T. T.; Li, C. R.; Han, W. Y.; Chai, Y. M.; Liu, Z.; Ou, L. L.; Li, W. Z. Functionalized carbon nanotube-embedded poly(vinyl alcohol) microspheres for efficient removal of tumor necrosis factor-α. ACS Biomater. Sci. Eng. 2020, 6, 4722–4730.

    CAS  Google Scholar 

  69. Zhao, X. C.; Lu, D. W.; Hao, F.; Liu, R. T. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J. Hazard. Mater. 2015, 292, 98–107.

    CAS  Google Scholar 

  70. Qiao, L. Z.; Li, Y. L.; Liu, Y.; Wang, Y. H.; Du, K. F. High-strength, blood-compatible, and high-capacity bilirubin adsorbent based on cellulose-assisted high-quality dispersion of carbon nanotubes. J. Chromatogr. A 2020, 1634, 461659.

    CAS  Google Scholar 

  71. Yen, S. C.; Liu, Z. W.; Juang, R. S.; Sahoo, S.; Huang, C. H.; Chen, P. L.; Hsiao, Y. S.; Fang, J. T. Carbon nanotube/conducting polymer hybrid nanofibers as novel organic bioelectronic interfaces for efficient removal of protein-bound uremic toxins. ACS Appl. Mater. Interfaces 2019, 11, 43843–43856.

    CAS  Google Scholar 

  72. Meng, J.; Cheng, X. L.; Kong, H.; Yang, M.; Xu, H. Y. Preparation and biocompatibility evaluation of polyurethane filled with multiwalled carbon nanotubes. J. Nanosci. Nanotechnol. 2013, 13, 1467–1471.

    CAS  Google Scholar 

  73. Ridley, A. J.; Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992, 70, 389–399.

    CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank financial supports from the National Natural Science Foundation of China (Nos. NSFC90306004, 30270394, and 90606018) and the Natural Science Foundation of Beijing Municipality (No. 7092063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Haiyan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Hu, X., Wen, T. et al. Interactions to plasm protein and application potentials of carbon nanotubes in blood-contacting medical devices. Nano Res. 16, 12506–12515 (2023). https://doi.org/10.1007/s12274-023-6170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6170-4

Keywords

Navigation