Skip to main content
Log in

Advances of graphdiyne-supported metal catalysts in thermocatalytic reactions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Supported metal catalysts are widely used in the modern chemical industry. The electronic interaction between supports and active components is of great significance for heterogeneous catalysis. Graphdiyne (GDY), a new type of carbon allotrope with sp-hybridized carbon atoms, π conjugate structure, and electron transmission capability, is a promising candidate as catalyst support. Recent years have witnessed the rapid progress of GDY-supported metal catalysts for different catalysis reactions. Considering that most processes in the current chemical industry are thermocatalytic reactions, we herein give an overview about the advances and particular characteristics of GDY-supported catalysts in these reactions. The geometric structure and electronic properties of GDY are first introduced. Then, the synthesis methods for GDY-supported metal catalysts and their applications in thermocatalytic reactions are discussed, in which the effect of electronic interaction on catalytic performance is highlighted. Finally, the current challenges and future directions of GDY-supported metal catalysts for thermocatalysis are proposed. It is expected that this review will enrich our understanding of the advances of GDY as a superior support for metal catalysts in thermocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. George, S. M. Introduction: Heterogeneous catalysis. Chem. Rev. 1995, 95, 475–476.

    CAS  Google Scholar 

  2. Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 2014, 43, 7887–7916.

    CAS  PubMed  Google Scholar 

  3. Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949–6985.

    CAS  PubMed  Google Scholar 

  4. van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

    CAS  Google Scholar 

  5. Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.

    CAS  PubMed  Google Scholar 

  6. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

    CAS  PubMed  ADS  Google Scholar 

  7. Campbell, C. T. Electronic perturbations. Nat. Chem. 2012, 4, 597–598.

    CAS  PubMed  Google Scholar 

  8. Li, Y. Y.; Zhang, Y. S.; Qian, K.; Huang, W. X. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts. ACS Catal. 2022, 12, 1268–1287.

    Google Scholar 

  9. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

    CAS  Google Scholar 

  10. Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.

    CAS  PubMed  ADS  Google Scholar 

  11. Zheng, X. C.; Chen, S. A.; Li, J. Z.; Wu, H.; Zhang, C.; Zhang, D. Y.; Chen, X.; Gao, Y.; He, F.; Hui, L. et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research. ACS Nano 2023, 17, 14309–14346.

    CAS  PubMed  Google Scholar 

  12. Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

    CAS  PubMed  Google Scholar 

  13. Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.

    CAS  PubMed  Google Scholar 

  14. Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Chen, X.; Zhang, D. Y.; Huang, B. L.; Li, Y. L. Graphdiyne-based metal atomic catalysts for synthesizing ammonia. Natl. Sci. Rev. 2021, 8, nwaa213.

    CAS  PubMed  Google Scholar 

  15. Gao, Y.; Xue, Y. R.; Qi, L.; Xing, C. Y.; Zheng, X. C.; He, F.; Li, Y. L. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 2022, 13, 5227.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Fang, L.; Cao, Z. X. Isoelectronic doping and external electric field regulate the gas-separation performance of graphdiyne. J. Phys. Chem. C 2020, 124, 2712–2720.

    CAS  Google Scholar 

  17. Li, J.; Gao, X.; Zhu, L.; Ghazzal, M. N.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy Environ. Sci. 2020, 13, 1326–1346.

    CAS  Google Scholar 

  18. Zhao, F. H.; Li, X. D.; He, J. J.; Wang, K.; Huang, C. H. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chem. Eng. J. 2021, 413, 127486.

    CAS  Google Scholar 

  19. Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

    CAS  PubMed  Google Scholar 

  20. Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Yi, Y. P.; Li, Y. L. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem., Int. Ed. 2018, 57, 3968–3973.

    CAS  Google Scholar 

  21. Wang, F.; Zuo, Z. C.; Li, L.; Li, K.; He, F.; Jiang, Z. Q.; Li, Y. L. Large-area aminated-graphdiyne thin films for direct methanol fuel cells. Aegew. Chem., Int. Ed. 2019, 58, 15010–15015.

    CAS  Google Scholar 

  22. Chen, X. Y.; Jiang, X.; Yang, N. J. Graphdiyne electrochemistry: Progress and perspectives. Small 2022, 18, 2201135.

    CAS  Google Scholar 

  23. Li, J.; Zhu, L.; Tung, C. H.; Wu, L. Z. Engineering graphdiyne for solar photocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202301384.

    CAS  Google Scholar 

  24. Fu, X. L.; Zhao, X.; Lu, T. B.; Yuan, M. J.; Wang, M. Graphdiyne-based single-atom catalysts with different coordination environments. Angew. Chem., Int. Ed. 2023, 62, e202219242.

    CAS  Google Scholar 

  25. Xue, Y. R.; Li, Y. L.; Zhang, J.; Liu, Z. F.; Zhao, Y. L. 2D graphdiyne materials: Challenges and opportunities in energy field. Sci. China Chem. 2018, 61, 765–786.

    CAS  Google Scholar 

  26. Du, Y. C.; Zhou, W. D.; Gao, J.; Pan, X. Y.; Li, Y. L. Fundament and application of graphdiyne in electrochemical energy. Acc. Chem. Res. 2020, 53, 459–469.

    CAS  PubMed  Google Scholar 

  27. Khan, K.; Tareen, A. K.; Iqbal, M.; Shi, Z.; Zhang, H.; Guo, Z. Y. Novel emerging graphdiyne based two dimensional materials: Synthesis, properties, and renewable energy applications. Nano Today 2021, 39, 101207.

    CAS  Google Scholar 

  28. Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

    CAS  ADS  Google Scholar 

  29. Huang, C. S.; Li, Y. L. Structure of 2D graphdiyne and its application in energy fields. Acta Phys. Chim. Sin. 2016, 32, 1314–1329.

    CAS  Google Scholar 

  30. Ma, D. W.; Li, T. X.; Wang, Q. G.; Yang, G.; He, C. Z.; Ma, B. Y.; Lu, Z. S. Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 2015, 95, 756–765.

    CAS  Google Scholar 

  31. He, J. J.; Ma, S. Y.; Zhou, P.; Zhang, C. X.; He, C. Y.; Sun, L. Z. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT + U calculations. J. Phys. Chem. C 2012, 116, 26313–26321.

    CAS  Google Scholar 

  32. Zou, H. Y.; Arachchige, L. J.; Rong, W. F.; Tang, C.; Wang, R. H.; Tan, S.; Chen, H.; He, D. S.; Hu, J. H.; Hu, E. Y. et al. Low-valence metal single atoms on graphdiyne promotes electrochemical nitrogen reduction via M-to-N2 π-backdonaiion. Adv. Funct. Mater. 2022, 32, 2200333.

    CAS  Google Scholar 

  33. Zou, H. Y.; Zhao, G.; Dai, H.; Dong, H. L.; Luo, W.; Wang, L.; Lu, Z. G.; Luo, Y.; Zhang, G. Z.; Duan, L. L. Electronic perturbation of copper single-atom CO2 reduction catalysts in a molecular way. Angew. Chem., Int. Ed. 2023, 62, e202217220.

    CAS  Google Scholar 

  34. Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443–1448.

    CAS  PubMed  Google Scholar 

  35. Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2019, 9, 1460.

    ADS  Google Scholar 

  36. Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.

    CAS  PubMed  Google Scholar 

  37. Yin, X. P.; Tang, S. F.; Zhang, C.; Wang, H. J.; Si, R.; Lu, X. L.; Lu, T. B. Graphdiyne-based Pd single-atom catalyst for semihydrogenation of alkynes to alkenes with high selectivity and conversion under mild conditions. J. Mater. Chem. A 2020, 8, 20925–20930.

    CAS  Google Scholar 

  38. Rong, W. F.; Zou, H. Y.; Zang, W. J.; Xi, S. B.; Wei, S. T.; Long, B. H.; Hu, J. H.; Ji, Y. F.; Duan, L. L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 466–472.

    CAS  Google Scholar 

  39. Liu, H.; Zou, H. Y.; Wang, D.; Wang, C. C.; Li, F.; Dai, H.; Song, T.; Wang, M.; Ji, Y. F.; Duan, L. L. Second sphere effects promote formic acid dehydrogenation by a single-atom gold catalyst supported on amino-substituted graphdiyne. Angew. Chem., Int. Ed. 2023, 62, e202216739.

    CAS  Google Scholar 

  40. Liu, H.; Zou, H. Y.; Wang, M.; Dong, H. L.; Wang, D.; Li, F.; Dai, H.; Song, T.; Wei, S. T.; Ji, Y. F. et al. Single-site heterogeneous organometallic Ir catalysts embedded on graphdiyne: Structural manipulation beyond the carbon support. Small 2022, 18, 2203442.

    CAS  Google Scholar 

  41. Li, R. R.; Yue, Y. X.; Chen, X. L.; Chang, R. Q.; Zhang, J. X.; Zhao, B.; Zhang, J. Y.; Cai, D.; Zhu, Y. H.; Han, D. M. et al. Graphdiyne anchoring to construct highly dense palladium trimer active sites for the selective hydrogenation of acetylene. Nano Res. 2023, 16, 6167–6177.

    CAS  ADS  Google Scholar 

  42. Yu, J.; Chen, W. M.; He, F.; Song, W. G.; Cao, C. Y. Electronic oxide-support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst. J. Am. Chem. Soc. 2023, 145, 1803–1810.

    CAS  PubMed  Google Scholar 

  43. Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

    CAS  ADS  Google Scholar 

  44. Li, J.; Han, X.; Wang, D. M.; Zhu, L.; Ha-Thi, M. H.; Pino, T.; Arbiol, J.; Wu, L. Z.; Ghazzal, M. N. A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed CuO nanoparticles. Angew. Chem., Int. Ed. 2022, 61, e202210242.

    CAS  Google Scholar 

  45. Li, Z. H.; Hu, R.; Ye, S.; Song, J.; Liu, L. W.; Qu, J. L.; Song, W. G.; Cao, C. Y. High-performance heterogeneous thermocatalysis caused by catalyst wettability regulation. Chem.—Eur. J. 2022, 28, e202104588.

    CAS  PubMed  Google Scholar 

  46. Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680.

    CAS  PubMed  Google Scholar 

  47. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    CAS  PubMed  ADS  Google Scholar 

  48. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    CAS  PubMed  ADS  Google Scholar 

  49. Yang, L. L.; Wang, H. J.; Wang, J.; Li, Y.; Zhang, W.; Lu, T. B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142–13148.

    CAS  Google Scholar 

  50. Li, J. Q.; Zhong, L. X.; Tong, L. M.; Yu, Y.; Liu, Q.; Zhang, S. C.; Yin, C.; Qiao, L.; Li, S. Z.; Si, R. et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423.

    CAS  Google Scholar 

  51. Oger, C.; Balas, L.; Durand, T.; Galano, J. M. Are alkyne reductions chemo-, regio-, and stereoselective enough to provide pure (z)-olefins in polyfunctionalized bioactive molecules? Chem. Rev. 2013, 113, 1313–1350.

    CAS  PubMed  Google Scholar 

  52. Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

    CAS  Google Scholar 

  53. Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

    PubMed  Google Scholar 

  54. Shen, H.; Li, Y. J.; Shi, Z. Q. A novel graphdiyne-based catalyst for effective hydrogenation reaction. ACS Appl. Mater. Interfaces 2019, 11, 2563–2570.

    CAS  PubMed  Google Scholar 

  55. Yu, J.; Chen, W. M.; Li, K. X.; Zhang, C. H.; Li, M. Z.; He, F.; Jiang, L.; Li, Y. L.; Song, W. G.; Cao, C. Y. Graphdiyne nanospheres as a wettability and electron modifier for enhanced hydrogenation catalysis. Angew. Chem., Int. Ed. 2022, 61, e202207255.

    CAS  Google Scholar 

  56. Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.

    CAS  PubMed  Google Scholar 

  57. Freund, H. J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem., Int. Ed. 2011, 50, 10064–10094.

    CAS  Google Scholar 

  58. Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

    PubMed  PubMed Central  ADS  Google Scholar 

  59. Pan, C. Q.; Wang, C. Y.; Zhao, X. Y.; Xu, P. Y.; Mao, F. H.; Yang, J.; Zhu, Y. H.; Yu, R. H.; Xiao, S. Y.; Fang, Y. R. et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951.

    CAS  PubMed  Google Scholar 

  60. Yu, J.; Cao, C. Y.; Jin, H. Q.; Chen, W. M.; Shen, Q. K.; Li, P. P.; Zheng, L. R.; He, F.; Song, W. G.; Li, Y. L. Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. Natl. Sci. Rev. 2022, 9, nwac018.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

    CAS  PubMed  Google Scholar 

  62. Shen, Q. K.; Li, P. P.; Chen, W. M.; Jin, H. Q.; Yu, J.; Zhu, L.; Yang, Z. C.; Zhao, R. Q.; Zheng, L. R.; Song, W. G. et al. Ionic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Sci. China Mater. 2022, 65, 163–169.

    CAS  Google Scholar 

  63. Ball, M.; Wietschel, M. The future of hydrogen—Opportunities and challenges. Int. J. Hydrog. Energy 2009, 34, 615–627.

    CAS  Google Scholar 

  64. Li, Z. P.; Xu, Q. Metal-nanoparticle-catalyzed hydrogen generation from formic acid. Acc. Chem. Res. 2017, 50, 1449–1458.

    CAS  PubMed  Google Scholar 

  65. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem., Int. Ed. 2001, 40, 2004–2021.

    CAS  Google Scholar 

  66. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.

    CAS  Google Scholar 

  67. Qian, K.; Duan, H. M.; Li, Y. Y.; Huang, W. X. Electronic oxide-metal strong interaction (EOMSI). Chem.—Eur. J. 2020, 26, 13538–13542.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (Nos. 2018YFA0208504 and 2018YFA0703503), the National Natural Science Foundation of China (Nos. 92161112, 21932006, and 22272181), and the Youth Innovation Promotion Association of CAS (No. Y2017049) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyan Cao or Weiguo Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Yang, Y., Li, Y. et al. Advances of graphdiyne-supported metal catalysts in thermocatalytic reactions. Nano Res. 17, 2223–2233 (2024). https://doi.org/10.1007/s12274-023-6166-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6166-0

Keywords

Navigation