Skip to main content
Log in

Thylakoid engineered M2 macrophage for sonodynamic effect promoted cell therapy of early atherosclerosis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atherosclerosis is the most common cause of cardiovascular diseases that contribute to the major morbidity worldwide, but still lacking of effective treatment strategy. Here, a hybrid cell is constructed for the sonodynamic effect promoted cell therapy of early atherosclerosis by fusing M2 macrophages with thylakoid (TK) membranes. After systemic administration, the obtained TK-M2 actively accumulates in the early atherosclerotic plaques, wherein M2 macrophages relieve the cholesterol accumulation and the inflammation in the foam cells. Meanwhile, the TK membranes decorated on the M2 macrophages exhibit both type I and type II sonodynamic effects under ultrasound (US) activation, inducing the direct apoptosis of foam cells. The cooperation of M2 and TK leads to significant outcome in eliminating atherosclerotic plaques without obvious side-effects, providing a new avenue for atherosclerosis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Libby, P.; Buring, J. E.; Badimon, L.; Hansson, G. K.; Deanfield, J.; Bittencourt, M. S.; Tokgözoğlu, L.; Lewis, E. F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56.

    Article  PubMed  Google Scholar 

  2. Glass, C. K.; Witztum, J. L. Atherosclerosis. The road ahead. Cell 2001, 104, 503–516.

    Article  CAS  PubMed  Google Scholar 

  3. Bjorkegren, J. L. M.; Lusis, A. J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ungvari, Z.; Tarantini, S.; Donato, A. J.; Galvan, V.; Csiszar, A. Mechanisms of vascular aging. Circ. Res. 2018, 123, 849–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basatemur, G. L.; Jørgensen, H. F.; Clarke, M. C. H.; Bennett, M. R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 2019, 16, 727–744.

    Article  PubMed  Google Scholar 

  6. Koelwyn, G. J.; Corr, E. M.; Erbay, E.; Moore, K. J. Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 2018, 19, 526–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doran, A. C.; Yurdagul, A. Jr; Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 2020, 20, 254–267.

    Article  CAS  PubMed  Google Scholar 

  8. Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265.

    Article  CAS  PubMed  Google Scholar 

  9. Yahagi, K.; Kolodgie, F. D.; Otsuka, F.; Finn, A. V.; Davis, H. R.; Joner, M.; Virmani, R. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat. Rev. Cardiol. 2016, 13, 79–98.

    Article  CAS  PubMed  Google Scholar 

  10. Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014, 276, 618–632.

    Article  CAS  PubMed  Google Scholar 

  11. Luo, X.; Lv, Y.; Bai, X. X.; Qi, J. Y.; Weng, X. Z.; Liu, S. Y.; Bao, X. Y.; Jia, H. B.; Yu, B. Plaque erosion: A distinctive pathological mechanism of acute coronary syndrome. Front. Cardiovasc. Med. 2021, 8, 711453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lobatto, M. E.; Fuster, V.; Fayad, Z. A.; Mulder, W. J. M. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat. Rev. Drug Discovery 2011, 10, 835–852.

    Article  CAS  PubMed  Google Scholar 

  13. Hu, P. P.; Luo, S. X.; Fan, X. Q.; Li, D.; Tong, X. Y. Macrophage-targeted nanomedicine for the diagnosis and management of atherosclerosis. Front. Pharmacol. 2022, 13, 1000316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Libby, P.; Ridker, P. M.; Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Smith, B. R.; Edelman, E. R. Nanomedicines for cardiovascular disease. Nat. Cardiovasc. Res. 2023, 2, 351–367.

    Article  Google Scholar 

  16. Chen, W.; Schilperoort, M.; Cao, Y. H.; Shi, J. J.; Tabas, I.; Tao, W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 2022, 19, 228–249.

    Article  PubMed  Google Scholar 

  17. Zhang, S.; Liu, Y.; Cao, Y.; Zhang, S. T.; Sun, J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Targeting the microenvironment of vulnerable atherosclerotic plaques: An emerging diagnosis and therapy strategy for atherosclerosis. Adv. Mater. 2022, 34, 2110660.

    Article  CAS  Google Scholar 

  18. Xu, H.; Li, S.; Liu, Y. S. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduction Targeted Ther. 2022, 7, 231.

    Article  Google Scholar 

  19. Ao, W.; Yurdagul, A. Jr.; Kong, N.; Li, W. L.; Wang, X. B.; Doran, A. C.; Feng, C.; Wang, J. Q.; Islam, M. A.; Farokhzad, O. C. et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice.. Sci. Transl. Med. 2020, 23, eaay1063.

    Google Scholar 

  20. Huang, X. G.; Liu, C.; Kong, N.; Xiao, Y. F.; Yurdagul, A. Jr; Tabas, I.; Tao, W. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat. Protoc. 2022, 17, 748–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh, A. P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction Targeted Ther. 2019, 4, 33.

    Article  Google Scholar 

  22. Zhang, X. W.; Centurion, F.; Misra, A.; Patel, S.; Gu, Z. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment. Adv. Drug Delivery Rev. 2023, 194, 114709.

    Article  CAS  Google Scholar 

  23. Flores, A. M.; Hosseini-Nassab, N.; Jarr, K. U.; Ye, J. Q.; Zhu, X. J.; Wirka, R.; Koh, A. L.; Tsantilas, P.; Wang, Y.; Nanda, V. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 2020, 15, 154–161.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Chen, Y. X.; Qin, D. T.; Zou, J. H.; Li, X. B.; Guo, X. D.; Tang, Y.; Liu, C.; Chen, W.; Kong, N.; Zhang, C. Y. et al. Living leukocyte-based drug delivery systems. Adv. Mater. 2023, 35, 2207787.

    Article  CAS  Google Scholar 

  25. Chan, C. K. W.; Zhang, L.; Cheng, C. K.; Yang, H. R.; Huang, Y.; Tian, X. Y.; Choi, C. H. J. Recent advances in managing atherosclerosis via nanomedicine. Small 2018, 14, 1702793.

    Article  Google Scholar 

  26. Mulder, W. J. M.; Jaffer, F. A.; Fayad, Z. A.; Nahrendorf, M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 2014, 6, 239sr1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bouchareychas, L.; Duong, P.; Covarrubias, S.; Alsop, E.; Phu, T. A.; Chung, A.; Gomes, M.; Wong, D.; Meechoovet, B.; Capili, A. et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo. Cell Rep. 2020, 32, 107881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, W. Z.; Yin, R. H.; Zhu, X. Y.; Yang, S. N.; Wang, J.; Zhou, Z. F.; Pan, X. D.; Ma, A. J. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol. Ther. -Nucleic Acids 2021, 23, 119–131.

    Article  CAS  PubMed  Google Scholar 

  29. Lázaro-Ibáñez, E.; Faruqu, F. N.; Saleh, A. F.; Silva, A. M.; Wang, J. T. W.; Rak, J.; Al-Jamal, K. T.; Dekker, N. Selection of fluorescent, bioluminescent, and radioactive tracers to accurately reflect extracellular vesicle biodistribution in vivo. ACS Nano 2021, 15, 3212–3227.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X.; Zhang, H. B.; Gu, J. M.; Zhang, J. Y.; Shi, H.; Qian, H.; Wang, D. Q.; Xu, W. R.; Pan, J. M.; Santos, H. A. Engineered extracellular vesicles for cancer therapy. Adv. Mater. 2021, 33, 2005709.

    Article  CAS  Google Scholar 

  31. Liu, J. J.; Zhou, B.; Guo, Y. L.; Zhang, A. M.; Yang, K.; He, Y.; Wang, J. B.; Cheng, Y. S.; Cui, D. X. SR-A-targeted nanoplatform for sequential photothermal/photodynamic ablation of activated macrophages to alleviate atherosclerosis. ACS Appl. Mater. Interfaces 2021, 13, 29349–29362.

    Article  CAS  Google Scholar 

  32. Wu, G. H.; Zhang, J. F.; Zhao, Q. R.; Zhuang, W. R.; Ding, J. J.; Zhang, C.; Gao, H. J.; Pang, D. W.; Pu, K. Y.; Xie, H. Y. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew. Chem., Int. Ed. 2020, 59, 4068–4074.

    Article  CAS  Google Scholar 

  33. Ouyang, J.; Xie, A.; Zhou, J.; Liu, R. C.; Wang, L. Q.; Liu, H. J.; Kong, N.; Tao, W. Minimally invasive nanomedicine: Nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 2022, 51, 4996–5041.

    Article  CAS  PubMed  Google Scholar 

  34. Meng, N.; Gong, Y.; Zhang, J. F.; Mu, X.; Song, Z. M.; Feng, R. L.; Zhang, H. A novel curcumin-loaded nanoparticle restricts atherosclerosis development and promotes plaques stability in apolipoprotein E deficient mice. J. Biomater. Appl. 2019, 33, 946–954.

    Article  CAS  PubMed  Google Scholar 

  35. Bi, Y.; Chen, J. X.; Hu, F.; Liu, J.; Li, M.; Zhao, L. M2 macrophages as a potential target for antiatherosclerosis treatment. Neural. Plast. 2019, 2019, 6724903.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, H.; Yang, Y.; Sun, X.; Tian, F.; Guo, S. Y.; Wang, W.; Tian, Z.; Jin, H.; Zhang, Z. G.; Tian, Y. Sonodynamic therapy-induced foam cells apoptosis activates the phagocytic PPARγ-LXRα-ABCA1/ABCG1 pathway and promotes cholesterol efflux in advanced plaque. Theranostics 2018, 8, 4969–4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ouyang, J.; Wang, L. Q.; Chen, W. S.; Zeng, K.; Han, Y. J.; Xu, Y.; Xu, Q. F.; Deng, L.; Liu, Y. N. Biomimetic nanothylakoids for efficient imaging-guided photodynamic therapy for cancer. Chem. Commun. 2018, 54, 3468–3471.

    Article  CAS  Google Scholar 

  38. Lei, Y.; Zhao, H. L.; Wu, Y. Z.; Huang, L. L.; Nie, W. D.; Liu, H. L.; Wu, G. H.; Pang, D. W.; Xie, H. Y. Phytochemical natural killer cells reprogram tumor microenvironment for potent immunotherapy of solid tumors. Biomaterials 2022, 287, 121635.

    Article  CAS  PubMed  Google Scholar 

  39. Zhuang, W. R.; Wang, Y. F.; Lei, Y.; Zuo, L. P.; Jiang, A. Q.; Wu, G. H.; Nie, W. D.; Huang, L. L.; Xie, H. Y. Phytochemical engineered bacterial outer membrane vesicles for photodynamic effects promoted immunotherapy. Nano Lett. 2022, 22, 4491–4500.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Liu, H. L.; Lei, Y.; Nie, W. D.; Zhao, H. L.; Wu, Y. Z.; Zuo, L. P.; Wu, G. H.; Yang, R. L.; Xie, H. Y. Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy. Nano Res. 2022, 15, 4233–4242.

    Article  CAS  ADS  Google Scholar 

  41. Tang, J. N.; Su, T.; Huang, K.; Dinh, P. U.; Wang, Z. G.; Vandergriff, A.; Hensley, M. T.; Cores, J.; Allen, T.; Li, T. S. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018, 2, 17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Ye, J. J.; Song, W.; Feng, J. et al. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat. Commun. 2019, 10, 3199.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Ci, T. Y.; Li, H. J.; Chen, G. J.; Wang, Z. J.; Wang, J. Q.; Abdou, P.; Tu, Y. M.; Dotti, G.; Gu, Z. Cryo-shocked cancer cells for targeted drug delivery and vaccination. Sci. Adv. 2020, 6, eabc3013.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Whitman, S. C. A practical approach to using mice in atherosclerosis research. Clin. Biochem. Rev. 2004, 25, 81–93.

    PubMed  PubMed Central  Google Scholar 

  45. Sheptovitsky, Y. G.; Brudvig, G. W. Catalase-free photosystem II: The O2-evolving complex does not dismutate hydrogen peroxide. Biochemistry 1998, 37, 5052–5059.

    Article  CAS  PubMed  Google Scholar 

  46. Biswas, S. K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896.

    Article  CAS  PubMed  Google Scholar 

  47. Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S. A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J. T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440.

    Article  CAS  PubMed  Google Scholar 

  48. Tabas, I.; Lichtman, A. H. Monocyte-macrophages and T cells in atherosclerosis. Immunity 2017, 47, 621–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barrett, T. J. Macrophages in atherosclerosis regression. Arterioscler., Thromb., Vasc. Biol. 2020, 40, 20–33.

    Article  CAS  PubMed  Google Scholar 

  50. Kitamoto, S.; Egashira, K.; Ichiki, T.; Han, X. B.; McCurdy, S.; Sakuda, S.; Sunagawa, K.; Boisvert, W. A. Chitinase inhibition promotes atherosclerosis in hyperlipidemic mice. Am. J. Pathol. 2013, 183, 313–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jahn, D.; Verkam Biochem p, E.; Söll, D. Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends. Sci. 1992, 17, 215–218.

    CAS  Google Scholar 

  52. Reinbothe, C.; El Bakkouri, M.; Buhr, F.; Muraki, N.; Nomata, J.; Kurisu, G.; Fujita, Y.; Reinbothe, S. Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction. Trends Plant Sci. 2010, 15, 614–624.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Z. J.; Kang, M. M.; Tan, H.; Song, N.; Li, M.; Xiao, P. H.; Yan, D. Y.; Zhang, L. P.; Wang, D.; Tang, B. Z. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem. Soc. Rev. 2022, 51, 1983–2030.

    Article  CAS  PubMed  Google Scholar 

  54. Wu, W. B.; Mao, D.; Xu, S. D.; Kenry; Hu, F.; Li, X. Q.; Kong, D. L.; Liu, B. Polymerization-enhanced photosensitization. Chem 2018, 4, 1937–1951.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 22025401), the National Natural Science Foundation of China (Nos. 21874011, and 22104005), China Postdoctoral Science Foundation (Nos. 2021TQ0037, and 2021M690405). The authors thank Biological & Medical Engineering Core Facilities (Beijing Institute of Technology) for providing advanced equipment. The authors thank Yun Feng from Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science for her help of analyzing confocal images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruili Yang or Haiyan Xie.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Mu, C., Zhao, Q. et al. Thylakoid engineered M2 macrophage for sonodynamic effect promoted cell therapy of early atherosclerosis. Nano Res. 17, 2919–2928 (2024). https://doi.org/10.1007/s12274-023-6156-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6156-2

Keywords

Navigation