Skip to main content
Log in

Single-atom alloys prepared by two-step thermal evaporation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom alloys (SAAs) have gained significant attention due to their remarkable atomic utilization efficiency, interactions between single atoms (SAs) and metal supports, and free-atom-like electronic structure of dopant elements. In this work, we observed the formation of SAs in pre-deposited metal particles by a two-step thermal evaporation technique, thereby establishing the first instance of discovering SAAs by thermal evaporation. The discovery of SAAs by thermal evaporation extends the range of SAAs preparation methods to include this traditional synthetic technique, which offers convenience, cost-efficiency, and universality. The formation mechanism of SAAs prepared using this technique was elucidated by density functional theory calculations. It was demonstrated that thermal evaporation can be utilized to prepare SAAs with multiple SAs, further highlighting its universal applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, S. X.; Hao, C.; Shi, Y. T. The power of single-atom catalysis. ChemCatChem 2015, 7, 2559–2567.

    Article  CAS  Google Scholar 

  2. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  3. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    Article  CAS  Google Scholar 

  4. Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 2019, 52, 237–247.

    Article  CAS  PubMed  Google Scholar 

  5. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

    Article  CAS  PubMed  Google Scholar 

  6. Lucci, F. R.; Liu, J. L.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.

    Article  PubMed  ADS  Google Scholar 

  7. Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Mao, J. J.; Yin, J. S.; Pei, J. J.; Wang, D. S.; Li, Y. D. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917.

    Article  CAS  Google Scholar 

  9. Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S. J.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

    Article  CAS  Google Scholar 

  11. Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 2018, 8, 1701476.

    Article  Google Scholar 

  12. Yang, T. Y.; Qin, F. J.; Zhang, S. P.; Rong, H. P.; Chen, W. X.; Zhang, J. T. Atomically dispersed Ru in Pt3Sn intermetallic alloy as an efficient methanol oxidation electrocatalyst. Chem. Commun. 2021, 57, 2164–2167.

    Article  CAS  Google Scholar 

  13. Giannakakis, G.; Trimpalis, A.; Shan, J. J.; Qi, Z.; Cao, S. F.; Liu, J. L.; Ye, J. C.; Biener, J.; Flytzani-Stephanopoulos, M. NiAu single atom alloys for the non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Top. Catal. 2018, 61, 475–486.

    Article  CAS  Google Scholar 

  14. Ouyang, M. Y.; Papanikolaou, K. G.; Boubnov, A.; Hoffman, A. S.; Giannakakis, G.; Bare, S. R.; Stamatakis, M.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat. Commun. 2021, 12, 1549.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Wang, Y. X.; Cao, L.; Libretto, N. J.; Li, X.; Li, C. Y.; Wan, Y. D.; He, C.; Lee, J.; Gregg, J.; Zong, H. et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642.

    Article  CAS  PubMed  Google Scholar 

  16. Shan, J. J.; Liu, J. L.; Li, M. W.; Lustig, S.; Lee, S.; Flytzani-Stephanopoulos, M. NiCu single atom alloys catalyze the C–H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Appl. Catal. B: Environ. 2018, 226, 534–543.

    Article  CAS  Google Scholar 

  17. Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 2018, 10, 325–332.

    Article  CAS  PubMed  Google Scholar 

  18. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

    Article  CAS  Google Scholar 

  19. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Lv, J.; Lai, F. C.; Lin, L. M.; Lin, Y. Z.; Huang, Z. G.; Chen, R. Thermal stability of Ag films in air prepared by thermal evaporation. Appl. Surf. Sci. 2007, 253, 7036–7040.

    Article  CAS  ADS  Google Scholar 

  21. Yao, B. D.; Chan, Y. F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759.

    Article  CAS  ADS  Google Scholar 

  22. Bouhssira, N.; Abed, S.; Tomasella, E.; Cellier, J.; Mosbah, A.; Aida, M. S.; Jacquet, M. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation. Appl. Surf. Sci. 2006, 252, 5594–5597.

    Article  CAS  ADS  Google Scholar 

  23. Li, J.; Chen, W. D.; Lin, R.; Huang, M. R.; Wang, M.; Chai, M. S.; Zhu, H. W. Thermally evaporated Ag–Au bimetallic catalysts for efficient electrochemical CO2 reduction. Part. Part. Syst. Char. 2021, 38, 2100148.

    Article  CAS  Google Scholar 

  24. Canzian, A.; Mosca, H. O.; Bozzolo, G. Surface alloying of Pd on Cu (111). Surf. Sci. 2004, 551, 9–22.

    Article  CAS  ADS  Google Scholar 

  25. Bach Aaen, A.; Lægsgaard, E.; Ruban, A. V.; Stensgaard, I. Submonolayer growth of Pd on Cu (111) studied by scanning tunneling microscopy. Surf. Sci. 1998, 408, 43–56.

    Article  ADS  Google Scholar 

  26. Tierney, H. L.; Baber, A. E.; Sykes, E. C. H. Atomic-scale imaging and electronic structure determination of catalytic sites on Pd/Cu near surface alloys. J. Phys. Chem. C 2009, 113, 7246–7250.

    Article  CAS  Google Scholar 

  27. Chang, S. J.; Bao, H. L.; Huang, W. X. Size-dependent redispersion or agglomeration of Ag clusters on CeO2. J. Phys. Chem. C 2022, 126, 11537–11543.

    Article  CAS  Google Scholar 

  28. Ji, Y. J.; Chen, X. L.; Liu, S. M.; Song, S. J.; Xu, W. Q.; Jiang, R. H.; Chen, W. X.; Li, H. F.; Zhu, T. Y.; Li, Z. X. et al. Tailoring the electronic structure of single Ag atoms in Ag/WO3 for efficient NO reduction by CO in the presence of O2. ACS Catal. 2023, 13, 1230–1239.

    Article  CAS  Google Scholar 

  29. Zhao, Z. Y.; Li, Z. S.; Zou, Z. G. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 2011, 13, 4746–4753.

    Article  CAS  PubMed  Google Scholar 

  30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52172046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, J., Huang, M. et al. Single-atom alloys prepared by two-step thermal evaporation. Nano Res. 17, 2808–2813 (2024). https://doi.org/10.1007/s12274-023-6146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6146-4

Keywords

Navigation