Skip to main content
Log in

Complementary multicolor electrochromic devices with excellent stability based on porous tin oxide nanosheet scaffold

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochromic devices (ECDs) have been extensively investigated as promising candidates in broad cutting-edge applications, such as smart windows, electronic labels, adaptive camouflage, etc. However, they have suffered from either inadequate color variations or poor cycling stability for a long time. Herein, we developed a general strategy to boost the cyclic stability and enrich the color variations of ECDs by scrupulous design of the composition and nanostructure of electrodes, in which porous tin oxide (SnO2) nanosheets serve as the scaffold and typical metal oxides or conducting polymers as the active electrochromic materials. Various electrochromic composite materials, including polyaniline (PANI)@SnO2, V2O5@SnO2, and WO3@SnO2 heterostructured nanoarrays were prepared by the facile wet-chemical method. These composite electrodes exhibit remarkable electrochromic performances, e.g., superior cycling stability (more than 2000 cycles), rich color variations (more than 5 colors for PANI@SnO2), and enlarged optical modulation. These excellent performances account for the heterogenous porous nanoarrays, which not only facilitate the intercalation/extraction of ions but also relieve the stress generated during the electrochemical process. In addition, diverse prototypes of complementary multicolor ECD with excellent cycling stability (over thousands of cycles) and rich color variations (8 colors) were realized for the first time. We believe that our work put forward a general strategy for developing high-quality multicolor complementary electrochromic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. Y.; Wang, S.; Wang, X. J.; Zhang, W. R.; Zheng, W. X.; Zhang, Y. M.; Zhang, S. X. A. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 2019, 18, 1335–1342.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Sui, C.; Pu, J. K.; Chen, T. H.; Liang, J. W.; Lai, Y. T.; Rao, Y. F.; Wu, R. H.; Han, Y.; Wang, K. Y.; Li, X. Q. et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 2023, 6, 428–437.

    Article  Google Scholar 

  3. Jiang, J. X.; Qin, L. Q.; Halim, J.; Persson, P. O. Å.; Hou, L. T.; Rosen, J. Colorless-to-colorful switching of electrochromic MXene by reversible ion insertion. Nano Res. 2022, 15, 3587–3593.

    Article  CAS  ADS  Google Scholar 

  4. Huang, Y.; Wang, B. S.; Lyu, P.; Zhao, S. M.; Wu, X. K.; Zhang, S. L.; Li, R.; Jiang, Q. Y.; Wang, F.; Zhao, Y. L. et al. Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5600-7.

  5. Chen, M. J.; Zhang, X.; Yan, D. K.; Deng, J. B.; Sun, W. H.; Li, Z. T.; Xiao, Y. J.; Ding, Z. M.; Zhao, J. P.; Li, Y. Oxygen vacancy modulated amorphous tungsten oxide films for fast-switching and ultra-stable dual-band electrochromic energy storage smart windows. Mater. Horiz. 2023, 10, 2191–2203.

    Article  CAS  PubMed  Google Scholar 

  6. Runnerstrom, E. L.; Llordés, A.; Lounis, S. D.; Milliron, D. J. Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 2014, 50, 10555–10572.

    Article  CAS  Google Scholar 

  7. Gu, C.; Jia, A. B.; Zhang, Y. M.; Zhang, S. X. A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 2022, 122, 14679–14721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rao, T. K.; Zhou, Y. L.; Jiang, J.; Yang, P.; Liao, W. G. Low dimensional transition metal oxide towards advanced electrochromic devices. Nano Energy 2022, 100, 107479.

    Article  CAS  Google Scholar 

  9. Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531–5538.

    Article  CAS  PubMed  Google Scholar 

  10. Koo, B. R.; Jo, M. H.; Kim, K. H.; Ahn, H. J. Multifunctional electrochromic energy storage devices by chemical cross-linking: Impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Mater. 2020, 12, 10.

    Article  CAS  ADS  Google Scholar 

  11. Wu, X. L.; Fan, Q. C.; Bai, Z. Y.; Zhang, Q. H.; Jiang, W. Z.; Li, Y. G.; Hou, C. Y.; Li, K. R.; Wang, H. Z. Synergistic interaction of dual-polymer networks containing viologens-anchored poly(ionic liquid)s enabling long-life and large-area electrochromic organogels. Small, in press, DOI: https://doi.org/10.1002/smll.202301742.

  12. Vergaz, R.; Barrios, D.; Sánchez-Pena, J. M.; Pozo-Gonzalo, C.; Salsamendi, M. Relating cyclic voltammetry and impedance analysis in a viologen electrochromic device. Sol. Energy Mater. Sol. Cells 2009, 93, 2125–2132.

    Article  CAS  Google Scholar 

  13. Singh, S. B.; Tran, D. T.; Jeong, K. U.; Kim, N. H.; Lee, J. H. A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable Zn-ion battery. Small 2022, 18, 2104462.

    Article  CAS  Google Scholar 

  14. Cho, S. I.; Kwon, W. J.; Choi, S. J.; Kim, P.; Park, S. A.; Kim, J.; Son, S. J.; Xiao, R.; Kim, S. H.; Lee, S. B. Nanotube-based ultrafast electrochromic display. Adv. Mater. 2005, 17, 171–175.

    Article  CAS  Google Scholar 

  15. Zhang, D. S.; Wang, J. X.; Tong, Z. F.; Ji, H. B.; Qu, H. Y. Bioinspired dynamically switchable PANI/PS-b-P2VP thin films for multicolored electrochromic displays with long-term durability. Adv. Funct. Mater. 2021, 31, 2106577.

    Article  CAS  Google Scholar 

  16. Liu, Y. W.; Cao, S.; Liang, Y.; Han, X. X.; Yang, T.; Zeng, R. S.; Zhao, J. L.; Zou, B. S. Robust and swiftly multicolor Zn2+-electrochromic devices based on polyaniline cathode. Sol. Energy Mater. Sol. Cells 2022, 238, 111616.

    Article  CAS  Google Scholar 

  17. Zhou, K. L.; Wang, H.; Jiu, J. T.; Liu, J. B.; Yan, H.; Suganuma, K. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem. Eng. J. 2018, 345, 290–299.

    Article  CAS  Google Scholar 

  18. Zhao, W. X.; Wang, J. Y.; Tam, B.; Pei, P.; Li, F. Z.; Xie, A.; Cheng, W. Macroporous vanadium oxide ion storage films enable fast switching speed and high cycling stability of electrochromic devices. ACS Appl. Mater. Interfaces 2022, 14, 30021–30028.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, B. S.; Huang, Y.; Han, Y.; Zhang, W. S.; Zhou, C. H.; Jiang, Q. Y.; Chen, F. X.; Wu, X. K.; Li, R.; Lyu, P. et al. A facile strategy to construct Au@VxO2x+1 nanoflowers as a multicolor electrochromic material for adaptive camouflage. Nano Lett. 2022, 22, 3713–3720.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Tong, Z. Q.; Liu, S. K.; Li, X. G.; Ding, Y. B.; Zhao, J. P.; Li, Y. Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties. Electrochim. Acta 2016, 222, 194–202.

    Article  CAS  Google Scholar 

  21. Scherer, M. R. J.; Li, L.; Cunha, P. M. S.; Scherman, O. A.; Steiner, U. Enhanced electrochromism in gyroid-structured vanadium pentoxide. Adv. Mater. 2012, 24, 1217–1221.

    Article  CAS  PubMed  Google Scholar 

  22. Xia, X. H.; Chao, D. L.; Qi, X. Y.; Xiong, Q. Q.; Zhang, Y. Q.; Tu, J. P.; Zhang, H.; Fan, H. J. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett. 2013, 13, 4562–4568.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Ma, D. Y.; Shi, G. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Controllable growth of high-quality metal oxide/conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solar-heat shielding ability. J. Mater. Chem. A 2014, 2, 13541–13549.

    Article  CAS  Google Scholar 

  24. Zhang, S. L.; Peng, Y. T.; Zhao, J.; Fan, Z. J.; Ding, B.; Lee, J. Y.; Zhang, X. G.; Xuan, Y. M. Amorphous and porous tungsten oxide films for fast-switching dual-band electrochromic smart windows. Adv. Opt. Mater. 2023, 11, 2202115.

    Article  CAS  Google Scholar 

  25. Klein, J.; Hein, A.; Bold, E.; Alarslan, F.; Oesterschulze, E.; Haase, M. Intercalation-free, fast switching of mesoporous antimony doped tin oxide with cathodically coloring electrochromic dyes. Nanoscale Adv. 2022, 4, 2144–2152.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Cai, G. F.; Cui, M. Q.; Kumar, V.; Darmawan, P.; Wang, J. X.; Wang, X.; Eh, A. L. S.; Qian, K.; Lee, P. S. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 2016, 7, 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  27. Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhänen, T.; Steiner, U. A nanostructured electrochromic supercapacitor. Nano Lett. 2012, 12, 1857–1862.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Tong, Z. Q.; Li, N.; Lv, H. M.; Tian, Y. L.; Qu, H. Y.; Zhang, X.; Zhao, J. P.; Li, Y. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Sol. Energy Mater. Sol. Cells 2016, 146, 135–143.

    Article  CAS  Google Scholar 

  29. Tong, Z. Q.; Hao, J.; Zhang, K.; Zhao, J. P.; Su, B. L.; Li, Y. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J. Mater. Chem. C 2014, 2, 3651–3658.

    Article  CAS  Google Scholar 

  30. Liu, B. J. W.; Zheng, J.; Wang, J. L.; Xu, J.; Li, H. H.; Yu, S. H. Ultrathin W18O49 nanowire assemblies for electrochromic devices. Nano Lett. 2013, 13, 3589–3593.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Ariga, K. Nanoarchitectonics: What’s coming next after nanotechnology. Nanoscale Horiz. 2021, 6, 364–378.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791–795.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y. N.; Jia, C. Y.; Wan, Z. Q.; Weng, X. L.; Xie, J. L.; Deng, L. J. Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Sol. Energy Mater. Sol. Cells 2015, 132, 467–475.

    Article  CAS  Google Scholar 

  34. Zhu, J. H.; Wei, S. Y.; Alexander, M. Jr.; Dang, T. D.; Ho, T. C.; Guo, Z. Enhanced electrical switching and electrochromic properties of poly(p-phenylenebenzobisthiazole) thin films embedded with nano-WO3. Adv. Funct. Mater. 2010, 20, 3076–3084.

    Article  CAS  Google Scholar 

  35. Reddy, G. V. A.; Naveen Kumar, K.; Shaik, H.; Shetty, H. D.; Imran Jafri, R.; Abdul Sattar, S.; Kamath, K.; Doreswamy, B. H. Growth of cerium oxide nanorods by hydrothermal method and electrochromic properties of CeO2/WO3 hybrid thin films for smart window applications. Mater. Today Proc. 2023, 80, 833–839.

    Article  Google Scholar 

  36. Chen, Z. W.; Pan, D. Y.; Li, Z.; Jiao, Z.; Wu, M. H.; Shek, C. H.; Wu, C. M. L.; Lai, J. K. L. Recent advances in tin dioxide materials: Some developments in thin films, nanowires, and nanorods. Chem. Rev. 2014, 114, 7442–7486.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, H. K.; Rogach, A. L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 2014, 26, 123–133.

    Article  CAS  Google Scholar 

  38. Sun, Y. Q.; Chemelewski, W. D.; Berglund, S. P.; Li, C.; He, H. C.; Shi, G. Q.; Mullins, C. B. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. ACS Appl. Mater. Interfaces 2014, 6, 5494–5499.

    Article  CAS  PubMed  Google Scholar 

  39. Klein, J.; Alarslan, F.; Steinhart, M.; Haase, M. Cerium-modified mesoporous antimony doped tin oxide as intercalation-free charge storage layers for electrochromic devices. Adv. Funct. Mater. 2023, 33, 2210167.

    Article  CAS  Google Scholar 

  40. Zhang, L.; Wu, H. B.; Lou, X. W. Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithiumion batteries. Mater. Horiz. 2014, 1, 133–138.

    Article  CAS  Google Scholar 

  41. Dong, W. J.; Xu, J. J.; Wang, C.; Lu, Y.; Liu, X. Y.; Wang, X.; Yuan, X. T.; Wang, Z.; Lin, T. Q.; Sui, M. L. et al. A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 2017, 29, 1700136.

    Article  Google Scholar 

  42. Wu, H. B.; Chen, J. S.; Lou, X. W.; Hng, H. H. Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J. Phys. Chem. C 2011, 115, 24605–24610.

    Article  CAS  Google Scholar 

  43. Song, J. S.; Liu, H. P.; Pu, W. H.; Lu, Y.; Si, Z. X.; Zhang, Z. Y.; Ge, Y.; Li, N. X.; Zhou, H. P.; Xiao, W. et al. Thermal instability originating from the interface between organic-inorganic hybrid perovskites and oxide electron transport layers. Energy Environ. Sci. 2022, 15, 4836–4849.

    Article  CAS  Google Scholar 

  44. Liu, Q.; Qin, M. C.; Ke, W. J.; Zheng, X. L.; Chen, Z.; Qin, P. L.; Xiong, L. B.; Lei, H. W.; Wan, J. W.; Wen, J. et al. Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers. Adv. Funct. Mater. 2016, 26, 6069–6075.

    Article  CAS  Google Scholar 

  45. Li, Z. P.; Wang, L.; Liu, R. R.; Fan, Y. P.; Meng, H. G.; Shao, Z. P.; Cui, G. L.; Pang, S. P. Spontaneous interface ion exchange: Passivating surface defects of perovskite solar cells with enhanced photovoltage. Adv. Energy Mater. 2019, 9, 1902142.

    Article  CAS  Google Scholar 

  46. Wu, X. Y.; Zheng, Y. T.; Liang, J. H.; Zhang, Z. F.; Tian, C. C.; Zhang, Z. A.; Hu, Y. X.; Sun, A. X.; Wang, C. Y.; Wang, J. L. et al. Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact via a nanostructured tin oxide layer. Mater. Horiz. 2023, 10, 122–135.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Lv, Y. H.; Wang, P.; Cai, B.; Ma, Q. S.; Zheng, X. J.; Wu, Y. H.; Jiang, Q. K.; Liu, J. Y.; Zhang, W. H. Facile fabrication of SnO2 nanorod arrays films as electron transporting layer for perovskite solar cells. Sol. RRL 2018, 2, 1800133.

    Article  Google Scholar 

  48. Nguyen, T. D.; Yeo, L. P.; Kei, T. C.; Mandler, D.; Magdassi, S.; Tok, A. I. Y. Efficient near infrared modulation with high visible transparency using SnO2−WO3 nanostructure for advanced smart windows. Adv. Opt. Mater. 2019, 7, 1801389.

    Article  Google Scholar 

  49. Cai, G. F.; Tu, J. P.; Zhou, D.; Zhang, J. H.; Xiong, Q. Q.; Zhao, X. Y.; Wang, X. L.; Gu, C. D. Multicolor electrochromic film based on TiO2@Polyaniline core/shell nanorod array. J. Phys. Chem. C 2013, 117, 15967–15975.

    Article  CAS  Google Scholar 

  50. Vujković, M. J.; Etinski, M.; Vasić, B.; Kuzmanović, B.; Bajuk-Bogdanović, D.; Dominko, R.; Mentus, S. Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons. J. Power Sources 2021, 482, 228937.

    Article  Google Scholar 

  51. Dewan, A.; Narayanan, R.; Thotiyl, M. O. A multi-chromic supercapacitor of high coloration efficiency integrating a MOF-derived V2O5 electrode. Nanoscale 2022, 14, 17372–17384.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, J.; Tu, J. P.; Zhang, D.; Qiao, Y. Q.; Xia, X. H.; Wang, X. L.; Gu, C. D. Multicolor electrochromic polyaniline-WO3 hybrid thin films: One-pot molecular assembling synthesis. J. Mater. Chem. 2011, 21, 17316–17324.

    Article  CAS  Google Scholar 

  53. Wang, Q. K.; Cao, S.; Meng, Q. C.; Wang, K.; Yang, T.; Zhao, J. L.; Zou, B. S. Robust and stable dual-band electrochromic smart window with multicolor tunability. Mater. Horiz. 2023, 10, 960–966.

    Article  CAS  PubMed  Google Scholar 

  54. Fang, W. C. Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C 2008, 112, 11552–11555.

    Article  CAS  Google Scholar 

  55. Hu, C. L.; Li, L.; Zhou, J.; Li, B. W.; Zhao, S. G.; Zou, C. W. Enhanced contrast of WO3-based smart windows by continuous Li-ion insertion and metal electroplating. ACS Appl. Mater. Interfaces 2022, 14, 32253–32260.

    Article  CAS  PubMed  Google Scholar 

  56. Wei, W.; Li, Z. Y.; Guo, Z. P.; Li, Y. H.; Hou, F. M.; Guo, W.; Wei, A. An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation. Appl. Surf. Sci. 2022, 571, 151277.

    Article  CAS  Google Scholar 

  57. Zhang, W.; Li, H. Z.; Yu, W. W.; Elezzabi, A. Y. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 2020, 9, 121.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Tong, Z. Q.; Kang, T. X.; Wan, Y. P.; Yang, R.; Wu, Y.; Shen, D.; Liu, S. H.; Tang, Y. B.; Lee, C. S. A Ca-ion electrochromic battery via a water-in-salt electrolyte. Adv. Funct. Mater. 2021, 31, 2104639.

    Article  CAS  Google Scholar 

  59. Zhang, J. H.; Tu, J. P.; Zhou, D.; Tang, H.; Li, L.; Wang, X. L.; Gu, C. D. Hierarchical SnO2@NiO core/shell nanoflake arrays as energy-saving electrochromic materials. J. Mater. Chem. C 2014, 2, 10409–10417.

    Article  CAS  Google Scholar 

  60. Chiou, N. R.; Lu, C. M.; Guan, J. J.; Lee, L. J.; Epstein, A. J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2007, 2, 354–357.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62222402, U2004175, and 51902086). The authors would like to acknowledge R. Xiao, R. Xu, and the Analysis and Testing Center of School of Life Sciences, Henan University for the microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofa Cai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, C., Wang, J., Liu, H. et al. Complementary multicolor electrochromic devices with excellent stability based on porous tin oxide nanosheet scaffold. Nano Res. 17, 3035–3042 (2024). https://doi.org/10.1007/s12274-023-6103-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6103-2

Keywords

Navigation