Skip to main content
Log in

PFAS in PMs might be the escalating hazard to the lung health

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atmospheric particulate matter (PM) is a dominant source of air pollution, in particular, molecules less than 2.5 µm in diameter, endangering human health. An estimated 2.1 million deaths from exposure to PM2.5 and 700,000 cases of respiratory disease caused by atmospheric pollution were reported on an annual basis. The main components of PM2.5 include heavy metal elements, water-soluble ions, carbon aerosols, ozone, and organic compounds. Per- and polyfluoroalkyl substances (PFASs) are a large group of representative pollutants among the organic compounds absorbed in PM2.5. PFASs are widely used in industrial production and hardly degraded in the environment, resulting in their accumulation in water, food, and air, and abosorbed by humans via ingestion and inhalation. On the other hand, accumulation of PFAS in the human body is proving to be associated with some unfavorable health outcomes, whereas the mechanisms underlying the effects of PFAS exposure on human lung diseases remain unclear at present. The toxicological effects of organic components are a significant focus of research. This review will fix our attention on the changes in the distribution, composition, and content of PFAS in PM2.5 by location and year, and provide an overview on the influence of PM2.5 and PFAS on lung health, with indications of possible synergistic adverse effects of PM2.5 and PFAS on pulmonary homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, C. S.; Duan, F. K.; He, K. B.; Ma, Y. L. Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ. Int. 2016, 86, 150–170.

    CAS  Google Scholar 

  2. Ding, J.; Guo, J. C.; Wang, L. M.; Chen, Y. D.; Hu, B.; Li, Y. Y.; Huang, R. J.; Cao, J. J.; Zhao, Y. L.; Geiser, M. et al. Cellular responses to exposure to outdoor air from the Chinese spring festival at the air-liquid interface. Environ. Sci. Technol. 2019, 53, 9128–9138.

    CAS  Google Scholar 

  3. Kourtchev, I.; Hellebust, S.; Heffernan, E.; Wenger, J.; Towers, S.; Diapouli, E.; Eleftheriadis, K. A new on-line SPE LC-HRMS method for the analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in PM2.5 and its application for screening atmospheric particulates from Dublin and Enniscorthy, Ireland. Sci. Total Environ. 2022, 835, 155496.

    CAS  Google Scholar 

  4. Chen, R.; Hu, B.; Liu, Y.; Xu, J. X.; Yang, G. S.; Xu, D. D.; Chen, C. Y. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2844–2855.

    CAS  Google Scholar 

  5. Achilleos, S.; Kioumourtzoglou, M. A.; Wu, C. D.; Schwartz, J. D.; Koutrakis, P.; Papatheodorou, S. I. Acute effects of fine particulate matter constituents on mortality: A systematic review and metaregression analysis. Environ. Int. 2017, 109, 89–100.

    CAS  Google Scholar 

  6. Xue, Y. G.; Wang, L. X.; Zhang, Y. M.; Zhao, Y. L.; Liu, Y. Air pollution: A culprit of lung cancer. J. Hazard. Mater. 2022, 434, 128937.

    CAS  Google Scholar 

  7. Wang, X. Y.; Xu, W. S.; Gu, J. G.; Yan, X. Y.; Chen, Y.; Guo, M. Y.; Zhou, G. Q.; Tong, S. R.; Ge, M. F.; Liu, Y. et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. Nanoscale 2019, 11, 17782–17790.

    CAS  Google Scholar 

  8. https://www.un.org/zh/documents/treaty/WIPO-2001 (accessed Jul 4, 2023).

  9. Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 182–189.

    CAS  Google Scholar 

  10. Yu, Z. G.; Wang, H.; Zhang, X.; Gong, S. P.; Liu, Z.; Zhao, N.; Zhang, C. Q.; Xie, X. R.; Wang, K. G.; Liu, Z. et al. Long-term environmental surveillance of PM2.5-bound polycyclic aromatic hydrocarbons in Jinan, China (2014–2020): Health risk assessment. J. Hazard. Mater. 2022, 425, 127766.

    CAS  Google Scholar 

  11. Hecht, S. S.; Hatsukami, D. K. Smokeless tobacco and cigarette smoking: Chemical mechanisms and cancer prevention. Nat. Rev. Cancer 2022, 22, 143–155.

    CAS  Google Scholar 

  12. Jubber, I.; Ong, S.; Bukavina, L.; Black, P. C.; Compérat, E.; Kamat, A. M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S. P.; Meeks, J. J. et al. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol. 2023, 84, 176–190.

    Google Scholar 

  13. Chapman, R. S. Lung function and polycyclic aromatic hydrocarbons in China. Am. J. Respir. Crit. Care Med. 2016, 193, 814–815.

    CAS  Google Scholar 

  14. Zhou, Y.; Sun, H. Z.; Xie, J. G.; Song, Y. C.; Liu, Y. W.; Huang, X. J.; Zhou, T.; Rong, Y.; Wu, T. C.; Yuan, J. et al. Urinary polycyclic aromatic hydrocarbon metabolites and altered lung function in Wuhan, China. Am. J. Respir. Crit. Care Med. 2016, 193, 835–846.

    CAS  Google Scholar 

  15. Jain, R. B. Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: Data for US children, adolescents, and adults. Environ. Pollut. 2020, 266, 115178.

    CAS  Google Scholar 

  16. Savvaides, T.; Koelmel, J. P.; Zhou, Y. K.; Lin, E. Z.; Stelben, P.; Aristizabal-Henao, J. J.; Bowden, J. A.; Godri Pollitt, K. J. Prevalence and implications of per- and polyfluoroalkyl substances (PFAS) in settled dust. Curr. Environ. Health Rep. 2021, 8, 323–335.

    CAS  Google Scholar 

  17. Beser, M. I.; Pardo, O.; Beltrån, J.; Yusà, V. Determination of per- and polyfluorinated substances in airborne particulate matter by microwave-assisted extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4847–4855.

    CAS  Google Scholar 

  18. Guo, M. J.; Lyu, Y.; Xu, T. T.; Yao, B.; Song, W. H.; Li, M.; Yang, X.; Cheng, T. T.; Li, X. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai. Environ. Pollut. 2018, 234, 9–19.

    CAS  Google Scholar 

  19. Ge, H.; Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Ogata, A.; Furuuchi, M. Particle size specific distribution of perfluoro alkyl substances in atmospheric particulate matter in Asian cities. Environ. Sci.:Process. Impacts 2017, 19, 549–560.

    CAS  Google Scholar 

  20. Phan, T.; Devine, C.; Laursen, E. D.; Simpson, A.; Kahn, A.; Khandhar, A. P.; Mesite, S.; Besse, B.; Mabery, K. J.; Flanagan, E. I. et al. Squalene emulsion manufacturing process scale-up for enhanced global pandemic response. Pharmaceuticals 2020, 13, 168.

    CAS  Google Scholar 

  21. Ritscher, A.; Wang, Z. Y.; Scheringer, M.; Boucher, J. M.; Ahrens, L.; Berger, U.; Bintein, S.; Bopp, S. K.; Borg, D.; Buser, A. M. et al. Zürich statement on future actions on per- and polyfluoroalkyl substances (PFASs). Environ. Health Perspect. 2018, 126, 084502.

    CAS  Google Scholar 

  22. Goosey, E.; Harrad, S. Perfluoroalkyl substances in UK indoor and outdoor air: Spatial and seasonal variation, and implications for human exposure. Environ. Int. 2012, 45, 86–90.

    CAS  Google Scholar 

  23. Barber, J. L.; Berger, U.; Chaemfa, C.; Huber, S.; Jahnke, A.; Temme, C.; Jones, K. C. Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J. Environ. Monit. 2007, 9, 530–541.

    CAS  Google Scholar 

  24. Zhou, J.; Baumann, K.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Avery, G. B.; Shimizu, M.; DeWitt, J. C.; Sun, M.; Vance, S. A. et al. PFOS dominates PFAS composition in ambient fine particulate matter (PM2.5) collected across North Carolina nearly 20 years after the end of its US production. Environ. Sci.: Process. Impacts 2021, 23, 580–587.

    CAS  Google Scholar 

  25. Jian, J. M.; Chen, D.; Han, F. J.; Guo, Y.; Zeng, L. X.; Lu, X. W.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069.

    CAS  Google Scholar 

  26. Fenton, S. E.; Ducatman, A.; Boobis, A.; DeWitt, J. C.; Lau, C.; Ng, C.; Smith, J. S.; Roberts, S. M. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630.

    CAS  Google Scholar 

  27. Mamsen, L. S.; Björvang, R. D.; Mucs, D.; Vinnars, M. T.; Papadogiannakis, N.; Lindh, C. H.; Andersen, C. Y.; Damdimopoulou, P. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ. Int. 2019, 124, 482–492.

    CAS  Google Scholar 

  28. Gao, K.; Chen, Y.; Xue, Q.; Fu, J.; Fu, K. H.; Fu, J. J.; Zhang, A. Q.; Cai, Z. W.; Jiang, G. B. Trends and perspectives in per- and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. TrAC Trends Anal. Chem. 2020, 133, 116114.

    CAS  Google Scholar 

  29. Zhao, P. J.; Xia, X. H.; Dong, J. W.; Xia, N.; Jiang, X. M.; Li, Y.; Zhu, Y. M. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Sci. Total Environ. 2016, 568, 57–65.

    CAS  Google Scholar 

  30. Zhang, Y.; Meng, W.; Guo, C. S.; Xu, J.; Yu, T.; Fan, W. H.; Li, L. Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake, China. Ceemosphere 2022, 88, 1292–1299.

    Google Scholar 

  31. Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J. A.; Thomsen, C.; Haug, L. S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244.

    CAS  Google Scholar 

  32. Dragon, J.; Hoaglund, M.; Badireddy, A. R.; Nielsen, G.; Schlezinger, J.; Shukla, A. Perfluoroalkyl substances (PFAS) affect inflammation in lung cells and tissues. Int. J. Mol. Sci. 2023, 24, 8539.

    CAS  Google Scholar 

  33. Kung, Y. P.; Lin, C. C.; Chen, M. H.; Tsai, M. S.; Hsieh, W. S.; Chen, P. C. Intrauterine exposure to per- and polyfluoroalkyl substances may harm children’s lung function development. Environ. Res. 2021, 192, 110178.

    CAS  Google Scholar 

  34. Ahmad, S.; Wen, Y.; Irudayaraj, J. M. K. PFOA induces alteration in DNA methylation regulators and SARS-CoV-2 targets Ace2 and Tmprss2 in mouse lung tissues. Toxicol. Rep. 2021, 8, 1892–1898.

    CAS  Google Scholar 

  35. Wang, M.; Aaron, C. P.; Madrigano, J.; Hoffman, E. A.; Angelini, E.; Yang, J.; Laine, A.; Vetterli, T. M.; Kinney, P. L.; Sampson, P. D. et al. Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function. JAMA 2019, 322, 546–556.

    CAS  Google Scholar 

  36. Goobie, G. C.; Carlsten, C.; Johannson, K. A.; Khalil, N.; Marcoux, V.; Assayag, D.; Manganas, H.; Fisher, J. H.; Kolb, M. R. J.; Lindell, K. O. et al. Association of particulate matter exposure with lung function and mortality among patients with fibrotic interstitial lung disease. JAMA Intern. Med. 2022, 182, 1248–1259.

    CAS  Google Scholar 

  37. Wei, J.; Li, Z. Q.; Lyapustin, A.; Sun, L.; Peng, Y. R.; Xue, W. H.; Su, T. N.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136.

    Google Scholar 

  38. Ali, A.; Ovais, M.; Cui, X. J.; Rui, Y. K.; Chen, C. Y. Safety assessment of nanomaterials for antimicrobial applications. Chem. Res. Toxicol. 2020, 33, 1082–1109.

    CAS  Google Scholar 

  39. Iriti, M.; Piscitelli, P.; Missoni, E.; Miani, A. Air pollution and health: The need for a medical reading of environmental monitoring data. Int. J. Environ. Res. Public Health 2020, 17, 2174.

    Google Scholar 

  40. Zhang, N.; Wu, Y. P.; Choi, Y. Is it feasible for China to enhance its air quality in terms of the efficiency and the regulatory cost of air pollution. Sci. Total Environ. 2020, 709, 136149.

    CAS  Google Scholar 

  41. Sánchez-Piñero, J.; Novo-Quiza, N.; Pernas-Castaño, C.; Moreda-Piñeiro, J.; Muniategui-Lorenzo, S.; López-Mahía, P. Inhalation bioaccessibility of multi-class organic pollutants associated to atmospheric PM2.5: Correlation with PM2.5 properties and health risk assessment. Environ. Pollut. 2022, 307, 119577.

    Google Scholar 

  42. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201903/t20190312_695462.html (accessed Jun 16, 2023).

  43. Gawor, A.; Shunthirasingham, C.; Hayward, S. J.; Lei, Y. D.; Gouin, T.; Mmereki, B. T.; Masamba, W.; Ruepert, C.; Castillo, L. E.; Shoeib, M. et al. Neutral polyfluoroalkyl substances in the global atmosphere. Environ. Sci.: Process. Impacts 2014, 16, 404–413.

    CAS  Google Scholar 

  44. Dinglasan-Panlilio, M. J. A.; Mabury, S. A. Significant residual fluorinated alcohols present in various fluorinated materials. Environ. Sci. Technol. 2006, 40, 1447–1453.

    CAS  Google Scholar 

  45. Wang, Z. Y.; Scheringer, M.; MacLeod, M.; Bogdal, C.; Müller, C. E.; Gerecke, A. C.; Hungerbühler, K. Atmospheric fate of poly- and perfluorinated alkyl substances (PFASs): II. Emission source strength in summer in Zurich, Switzerland. Environ. Pollut. 2012, 169, 204–209.

    CAS  Google Scholar 

  46. Yao, Y. M.; Sun, H. W.; Gan, Z. W.; Hu, H. W.; Zhao, Y. Y.; Chang, S.; Zhou, Q. X. Nationwide distribution of per- and polyfluoroalkyl substances in outdoor dust in mainland China from eastern to western areas. Environ. Sci. Technol. 2016, 50, 3676–3685.

    CAS  Google Scholar 

  47. Liu, W. X.; He, W.; Wu, J. Y.; Wu, W. J.; Xu, F. L. Distribution, partitioning and inhalation exposure of perfluoroalkyl acids (PFAAs) in urban and rural air near Lake Chaohu, China. Environ. Pollut. 2018, 243, 143–151.

    CAS  Google Scholar 

  48. Strynar, M. J.; Lindstrom, A. B. Perfluorinated compounds in house dust from Ohio and North Carolina, USA. Environ. Sci. Technol. 2008, 42, 3751–3756.

    CAS  Google Scholar 

  49. Zhu, H. K.; Kannan, K. A pilot study of per- and polyfluoroalkyl substances in automotive lubricant oils from the United States. Environ. Technol. Innovation 2020, 19, 100943.

    Google Scholar 

  50. McMurdo, C. J.; Ellis, D. A.; Webster, E.; Butler, J.; Christensen, R. D.; Reid, L. K. Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA. Environ. Sci. Technol. 2008, 42, 3969–3974.

    CAS  Google Scholar 

  51. Wallington, T. J.; Hurley, M. D.; Xia, J.; Wuebbles, D. J.; Sillman, S.; Ito, A.; Penner, J. E.; Ellis, D. A.; Martin, J.; Mabury, S. A. et al. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8: 2 fluorotelomer alcohol. Environ. Sci. Technol. 2006, 40, 924–930.

    CAS  Google Scholar 

  52. Paragot, N.; Becanová, J.; Karásková, P.; Prokeš, R.; Klánová, J.; Lammel, G.; Degrendele, C. Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe. Environ. Pollut. 2020, 265, 114851.

    CAS  Google Scholar 

  53. Lin, H. J.; Taniyasu, S.; Yamazaki, E.; Wei, S.; Wang, X. H.; Gai, N.; Kim, J. H.; Eun, H.; Lam, P. K. S.; Yamashita, N. Per- and polyfluoroalkyl substances in the air particles of Asia: Levels, seasonality, and size-dependent distribution. Environ. Sci. Technol. 2020, 54, 14182–14191.

    CAS  Google Scholar 

  54. Wang, S. Q.; Lin, X. P.; Li, Q.; Li, Y. Y.; Yamazaki, E.; Yamashita, N.; Wang, X. H. Particle size distribution, wet deposition and scavenging effect of per- and polyfluoroalkyl substances (PFASs) in the atmosphere from a subtropical city of China. Sci. Total Environ. 2022, 823, 153528.

    CAS  Google Scholar 

  55. Wang, S. Q.; Lin, X. P.; Li, Q.; Liu, C.; Li, Y. Y.; Wang, X. H. Neutral and ionizable per- and polyfluoroalkyl substances in the urban atmosphere: Occurrence, sources and transport. Sci. Total Environ. 2022, 823, 153794

    CAS  Google Scholar 

  56. Liu, Z. Z.; Zhou, J. Q.; Xu, Y. L.; Lu, J. F.; Chen, J. Y.; Wang, J. Distributions and sources of traditional and emerging per- and polyfluoroalkyl substances among multiple environmental media in the Qiantang River watershed, China. RSC Adv. 2022, 12, 21247–21254.

    CAS  Google Scholar 

  57. Bao, Y. X.; Cagnetta, G.; Huang, J.; Yu, G. Degradation of hexafluoropropylene oxide oligomer acids as PFOA alternatives in simulated nanofiltration concentrate: Effect of molecular structure. Chem. Eng. J. 2020, 382, 122866.

    CAS  Google Scholar 

  58. Mullin, L.; Katz, D. R.; Riddell, N.; Plumb, R.; Burgess, J. A.; Yeung, L. W. Y.; Jogsten, I. E. Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass spectrometry (LC-MS): Review of current approaches and environmental levels. TrAC Trends Anal. Chem. 2019, 118, 828–839.

    CAS  Google Scholar 

  59. Ardain, A.; Marakalala, M. J.; Leslie, A. Tissue-resident innate immunity in the lung. Immunology 2020, 159, 245–256.

    CAS  Google Scholar 

  60. Xia, X. H.; Rabearisoa, A. H.; Jiang, X. M.; Dai, Z. N. Bioaccumulation of perfluoroalkyl substances by Daphnia magna in water with different types and concentrations of protein. Environ. Sci. Technol. 2013, 47, 10955–10963.

    CAS  Google Scholar 

  61. Wang, B.; Yao, Y. M.; Wang, Y.; Chen, H.; Sun, H. W. Per- and polyfluoroalkyl substances in outdoor and indoor dust from mainland China: Contributions of unknown precursors and implications for human exposure. Environ. Sci. Technol. 2022, 56, 6036–6045.

    CAS  Google Scholar 

  62. Shoeib, M.; Harner, T.; Webster, G. M.; Lee, S. C. Indoor sources of poly- and perfluorinated compounds (PFCS) in Vancouver, Canada: Implications for human exposure. Environ. Sci. Technol. 2011, 45, 7999–8005.

    CAS  Google Scholar 

  63. Schlummer, M.; Gruber, L.; Fiedler, D.; Kizlauskas, M.; Muller, J. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure. Environ. Int. 2013, 57-58, 42–49.

    Google Scholar 

  64. Morgan, M. K.; Sheldon, L. S.; Croghan, C. W.; Jones, P. A.; Robertson, G. L.; Chuang, J. C.; Wilson, N. K.; Lyu, C. W. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 297–309.

    CAS  Google Scholar 

  65. Yao, Y. M.; Zhao, Y. Y.; Sun, H. W.; Chang, S.; Zhu, L. Y.; Alder, A. C.; Kannan, K. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure. Environ. Sci. Technol. 2018, 52, 3156–3166.

    CAS  Google Scholar 

  66. Yao, Y. M.; Chang, S.; Sun, H. W.; Gan, Z. W.; Hu, H. W.; Zhao, Y. Y.; Zhang, Y. F. Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China). Environ. Pollut. 2016, 212, 449–456.

    CAS  Google Scholar 

  67. Yu, N. Y.; Guo, H. W.; Yang, J. P.; Jin, L.; Wang, X. B.; Shi, W.; Zhang, X. W.; Yu, H. X.; Wei, S. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China. Environ. Sci. Technol. 2018, 52, 8205–8214.

    CAS  Google Scholar 

  68. Jahnke, A.; Ahrens, L.; Ebinghaus, R.; Temme, C. Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany. Environ. Sci. Technol. 2007, 41, 745–752.

    CAS  Google Scholar 

  69. Rauert, C.; Shoieb, M.; Schuster, J. K.; Eng, A.; Harner, T. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ. Pollut. 2018, 238, 94–102.

    CAS  Google Scholar 

  70. Saini, A.; Chinnadurai, S.; Schuster, J. K.; Eng, A.; Harner, T. Per- and polyfluoroalkyl substances and volatile methyl siloxanes in global air: Spatial and temporal trends. Environ. Pollut. 2023, 323, 121291.

    CAS  Google Scholar 

  71. Seo, S. H.; Son, M. H.; Shin, E. S.; Choi, S. D.; Chang, Y. S. Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. J. Hazard. Mater. 2019, 364, 19–27.

    CAS  Google Scholar 

  72. Zhang, B.; He, Y.; Huang, Y. Y.; Hong, D. H.; Yao, Y. M.; Wang, L.; Sun, W. W.; Yang, B. Q.; Huang, X. F.; Song, S. M. et al. Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China. Environ. Pollut. 2020, 263, 114461.

    CAS  Google Scholar 

  73. Zhou, J. Q.; Baumann, K.; Chang, N. M.; Morrison, G.; Bodnar, W.; Zhang, Z. F.; Atkin, J. M.; Surratt, J. D.; Turpin, B. J. Per- and polyfluoroalkyl substances (PFASs) in airborne particulate matter (PM2.0) emitted during floor waxing: A pilot study. Atmos. Environ. 2022, 268, 118845.

    CAS  Google Scholar 

  74. Lin, H. J.; Taniyasu, S.; Yamazaki, E.; Wu, R. B.; Lam, P. K. S.; Eun, H.; Yamashita, N. Fluorine mass balance analysis and per-and polyfluoroalkyl substances in the atmosphere. J. Hazard. Mater. 2022, 435, 129025.

    CAS  Google Scholar 

  75. Morales-McDevitt, M. E.; Becanova, J.; Blum, A.; Bruton, T. A.; Vojta, S.; Woodward, M.; Lohmann, R. The air that we breathe: Neutral and volatile PFAS in indoor air. Environ. Sci. Technol. Lett. 2021, 8, 897–902.

    CAS  Google Scholar 

  76. Morales-McDevitt, M. E.; Dunn, M.; Habib, A.; Vojta, S.; Becanova, J.; Lohmann, R. Poly- and perfluorinated alkyl substances in air and water from Dhaka, Bangladesh. Environ. Toxicol. Chem. 2022, 41, 334–342.

    CAS  Google Scholar 

  77. https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal (accessed Jun 15, 2023).

  78. Prevedouros, K.; Cousins, I. T.; Buck, R. C.; Korzeniowski, S. H. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44.

    CAS  Google Scholar 

  79. Kannan, K. Perfluoroalkyl and polyfluoroalkyl substances: Current and future perspectives. Environ. Chem. 2011, 8, 333–338.

    CAS  Google Scholar 

  80. https://www.americanchemistry.com/chemistry-in-america/chemistries/fluorotechnology-per-and-polyfluoroalkyl-substances-pfas/pfas-grouping-an-emerging-scientific-consensus (accessed Jun 15, 2023).

  81. Sun, J. C.; Bossi, R.; Bustnes, J. O.; Helander, B.; Boertmann, D.; Dietz, R.; Herzke, D.; Jaspers, V. L. B.; Labansen, A. L.; Lepoint, G. et al. White-tailed eagle (Haliaeetus albicilla) body feathers document spatiotemporal trends of perfluoroalkyl substances in the northern environment. Environ. Sci. Technol. 2019, 53, 12744–12753.

    CAS  Google Scholar 

  82. Li, J.; Del Vento, S.; Schuster, J.; Zhang, G.; Chakraborty, P.; Kobara, Y.; Jones, K. C. Perfluorinated compounds in the Asian atmosphere. Environ. Sci. Technol. 2011, 45, 7241–7248.

    CAS  Google Scholar 

  83. Zhang, L.; Liu, J. G.; Hu, J. X.; Liu, C.; Guo, W. G.; Wang, Q.; Wang, H. The inventory of sources, environmental releases and risk assessment for perfluorooctane sulfonate in China. Environ. Pollut. 2012, 165, 193–198.

    CAS  Google Scholar 

  84. Wu, J.; Jin, H. B.; Li, L.; Zhai, Z. H.; Martin, J. W.; Hu, J. X.; Peng, L.; Wu, P. F. Atmospheric perfluoroalkyl acid occurrence and isomer profiles in Beijing, China. Environ. Pollut. 2019, 255, 113129.

    CAS  Google Scholar 

  85. Liu, B. L.; Zhang, H.; Yao, D.; Li, J. Y.; Xie, L. W.; Wang, X. X.; Wang, Y. P.; Liu, G. Q.; Yang, B. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment. Chemosphere 2015, 138, 511–518.

    CAS  Google Scholar 

  86. Benskin, J. P.; De Silva, A. O.; Martin, J. W. Isomer profiling of perfluorinated substances as a tool for source tracking: A review of early findings and future applications. In Reviews of Environmental Contamination and Toxicology. De Voogt, P., Ed.; Springer: New York, 2010; pp 111–160.

    Google Scholar 

  87. Brendel, S.; Fetter, É.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH. Environ. Sci. Eur. 2018, 30, 9.

    Google Scholar 

  88. https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (accessed Jun 16, 2023).

  89. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.LI.2020.188.01.0001.01.ENG&toc=OJ%3AL%3A2020%3A188I%3ATOC (accessed Jun 5, 2023).

  90. https://environment.ec.europa.eu/news/commission-welcomes-political-agreement-persistent-chemicals-waste-2022-06-21_en (accessed Jun 11, 2023).

  91. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=PI_COM%3AC%282023%293387&qid=1686635076527 (accessed Jun 17, 2023).

  92. Gu, Y. F.; Huang, R. J.; Li, Y. J.; Duan, J.; Chen, Q.; Hu, W. W.; Zheng, Y.; Lin, C. S.; Ni, H. Y.; Dai, W. T. et al. Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms. Environ. Int. 2020, 140, 105732.

    CAS  Google Scholar 

  93. Ellis, D. A.; Martin, J. W.; De Silva, A. O.; Mabury, S. A.; Hurley, M. D.; Sulbaek Andersen, M. P.; Wallington, T. J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316–3321.

    CAS  Google Scholar 

  94. D’Eon, J. C.; Hurley, M. D.; Wallington, T. J.; Mabury, S. A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environ. Sci. Technol. 2006, 40, 1862–1868.

    Google Scholar 

  95. Churg, A.; Brauer, M. Human lung parenchyma retains PM2.5. Am. J. Respir. Crit. Care Med. 1997, 155, 2109–2111.

    CAS  Google Scholar 

  96. Raaschou-Nielsen, O.; Andersen, Z. J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M. J.; Brunekreef, B. et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822.

    Google Scholar 

  97. Adam, M.; Schikowski, T.; Carsin, A. E.; Cai, Y. T.; Jacquemin, B.; Sanchez, M.; Vierkötter, A.; Marcon, A.; Keidel, D.; Sugiri, D. et al. Adult lung function and long-term air pollution exposure. ESCAPE:A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50.

    CAS  Google Scholar 

  98. Peng, R. D.; Bell, M. L.; Geyh, A. S.; McDermott, A.; Zeger, S. L.; Samet, J. M.; Dominici, F. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ. Health Perspect. 2009, 117, 957–963.

    CAS  Google Scholar 

  99. Riva, D. R.; Magalhães, C. B.; Lopes, A. A.; Lanças, T.; Mauad, T.; Malm, O.; Valenca, S. S.; Saldiva, P. H.; Faffe, D. S.; Zin, W. A. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal. Toxicol. 2011, 23, 257–267.

    CAS  Google Scholar 

  100. Etchie, T. O.; Sivanesan, S.; Etchie, A. T.; Adewuyi, G. O.; Krishnamurthi, K.; George, K. V.; Rao, P. S. The burden of disease attributable to ambient PM2.5-bound PAHs exposure in Nagpur, India. Chemosphere 2018, 204, 277–289.

    CAS  Google Scholar 

  101. Huang, W. Z.; Zhou, Y.; Chen, X.; Zeng, X. W.; Knibbs, L. D.; Zhang, Y. T.; Jalaludin, B.; Dharmage, S. C.; Morawska, L.; Guo, Y. M. et al. Individual and joint associations of long-term exposure to air pollutants and cardiopulmonary mortality: A 22-year cohort study in Northern China. Lancet Reg. Health - Western Pac. 2023, 36, 100776.

    Google Scholar 

  102. Zhao, C.; Pu, W. Y.; Niu, M. Y.; Wazir, J.; Song, S. Y.; Wei, L. L.; Li, L.; Su, Z. L.; Wang, H. W. Respiratory exposure to PM2.5 soluble extract induced chronic lung injury by disturbing the phagocytosis function of macrophage. Environ. Sci. Pollut. Res. Int. 2022, 29, 13983–13997.

    CAS  Google Scholar 

  103. Huang, L. M.; Pu, J. D.; He, F.; Liao, B. L.; Hao, B. W.; Hong, W.; Ye, X. Q.; Chen, J. L.; Zhao, J.; Liu, S. et al. Positive feedback of the amphiregulin-EGFR-ERK pathway mediates PM2.5 from wood smoke-induced MUC5AC expression in epithelial cells. Sci. Rep. 2017, 7, 11084.

    Google Scholar 

  104. Zhang, H. S.; Lu, H. M.; Yu, L.; Yuan, J. X.; Qin, S.; Li, C.; Ge, R. S.; Chen, H. L.; Ye, L. P. Effects of gestational exposure to perfluorooctane sulfonate on the lung development of offspring rats. Environ. Pollut. 2021, 272, 115535.

    CAS  Google Scholar 

  105. Jabeen, M.; Fayyaz, M.; Irudayaraj, J. Epigenetic modifications, and alterations in cell cycle and apoptosis pathway in A549 lung carcinoma cell line upon exposure to perfluoroalkyl substances. Toxics 2020, 8, 112.

    CAS  Google Scholar 

  106. Liu, W. J.; Irudayaraj, J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food Chem. Toxicol. 2020, 141, 111358.

    CAS  Google Scholar 

  107. Kajekar, R. Environmental factors and developmental outcomes in the lung. Pharmacol. Ther. 2007, 114, 129–145.

    CAS  Google Scholar 

  108. Eriksson, U.; Karrman, A. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust. Environ. Sci. Technol. 2015, 49, 14503–14511.

    CAS  Google Scholar 

  109. Ryu, M. H.; Jha, A.; Ojo, O. O.; Mahood, T. H.; Basu, S.; Detillieux, K. A.; Nikoobakht, N.; Wong, C. S.; Loewen, M.; Becker, A. B. et al. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 307, L765–L774.

    CAS  Google Scholar 

  110. Borg, D.; Bogdanska, J.; Sundström, M.; Nobel, S.; Hâkansson, H.; Bergman, Å.; DePierre, J. W.; Halldin, K.; Bergström, U. Tissue distribution of 35S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reprod. Toxicol. 2010, 30, 558–565.

    CAS  Google Scholar 

  111. Chen, T.; Zhang, L.; Yue, J. Q.; Lv, Z. Q.; Xia, W.; Wan, Y. J.; Li, Y. Y.; Xu, S. Q. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod. Toxicol. 2012, 33, 538–545.

    CAS  Google Scholar 

  112. Ye, L. P.; Zhao, B. H.; Yuan, K. M.; Chu, Y. H.; Li, C. C.; Zhao, C. N.; Lian, Q. Q.; Ge, R. S. Gene expression profiling in fetal rat lung during gestational perfluorooctane sulfonate exposure. Toxicol. Lett. 2012, 209, 270–276.

    CAS  Google Scholar 

  113. Manzano-Salgado, C. B.; Granum, B.; Lopez-Espinosa, M. J.; Ballester, F.; Iñiguez, C.; Gascón, M.; Martínez, D.; Guxens, M.; Basterretxea, M.; Zabaleta, C. et al. Prenatal exposure to perfluoroalkyl substances, immune-related outcomes, and lung function in children from a Spanish birth cohort study. Int. J. Hyg. Environ. Health 2019, 222, 945–954.

    CAS  Google Scholar 

  114. Granum, B.; Haug, L. S.; Namork, E.; Stelevik, S. B.; Thomsen, C.; Aaberge, I. S.; van Loveren, H.; Løvik, M.; Nygaard, U. C. Prenatal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J. Immunotoxicol. 2013, 10, 373–379.

    CAS  Google Scholar 

  115. Bäckström, E.; Hogmalm, A.; Lappalainen, U.; Bry, K. Developmental stage is a major determinant of lung injury in a murine model of bronchopulmonary dysplasia. Pediatr. Res. 2011, 69, 312–318.

    Google Scholar 

  116. Mullassery, D.; Smith, N. P. Lung development. Semin. Pediatr. Surg. 2015, 24, 152–155.

    Google Scholar 

  117. Gaylord, A.; Berger, K. I.; Naidu, M.; Attina, T. M.; Gilbert, J.; Koshy, T. T.; Han, X. X.; Marmor, M.; Shao, Y. Z.; Giusti, R. et al. Serum perfluoroalkyl substances and lung function in adolescents exposed to the World Trade Center disaster. Environ. Res. 2019, 172, 266–272.

    CAS  Google Scholar 

  118. Silkoff, P. E.; Strambu, I.; Laviolette, M.; Singh, D.; FitzGerald, J. M.; Lam, S.; Kelsen, S.; Eich, A.; Ludwig-Sengpiel, A.; Hupp, G. C. et al. Asthma characteristics and biomarkers from the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) longitudinal profiling study. Respir. Res. 2015, 16, 142.

    CAS  Google Scholar 

  119. Lu, X.; Li, R. Q.; Yan, X. X. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ. Sci. Pollut. Res. Int. 2021, 28, 6374–6391.

    CAS  Google Scholar 

  120. Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592.

    CAS  Google Scholar 

  121. Fan, J. C.; Li, S. L.; Fan, C. L.; Bai, Z. G.; Yang, K. H. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2016, 23, 843–850.

    CAS  Google Scholar 

  122. Liu, F. F.; Qu, F. F.; Zhang, H. R.; Chao, L. S.; Li, R. Q.; Yu, F. X.; Guan, J. T.; Yan, X. X. The effect and burden modification of heating on adult asthma hospitalizations in Shijiazhuang: A time-series analysis. Respir. Res. 2019, 20, 122.

    Google Scholar 

  123. Garcia, E.; Berhane, K. T.; Islam, T.; McConnell, R.; Urman, R.; Chen, Z. H.; Gilliland, F. D. Association of changes in air quality with incident asthma in children in California, 1993–2014. JAMA 2019, 321, 1906–1915.

    Google Scholar 

  124. Longhin, E.; Holme, J. A.; Gualtieri, M.; Camatini, M.; Øvrevik, J. Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicol. In Vitro 2018, 52, 365–373.

    CAS  Google Scholar 

  125. Ogino, K.; Zhang, R.; Takahashi, H.; Takemoto, K.; Kubo, M.; Murakami, I.; Wang, D. H.; Fujikura, Y. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice. PLoS One 2014, 9, e92710.

    Google Scholar 

  126. Jin, Y. F.; Zhu, M. H.; Guo, Y. L.; Foreman, D.; Feng, F. F.; Duan, G. C.; Wu, W. D.; Zhang, W. G. Fine particulate matter (PM2.5) enhances FceRI-mediated signaling and mast cell function. Cell. Signal. 2019, 57, 102–109.

    CAS  Google Scholar 

  127. Zhao, Q. J.; Chen, H.; Yang, T.; Rui, W.; Liu, F.; Zhang, F.; Zhao, Y.; Ding, W. J. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2835–2843.

    CAS  Google Scholar 

  128. Fernando, I. P. S.; Jayawardena, T. U.; Kim, H. S.; Lee, W. W.; Vaas, A. P. J. P.; De Silva, H. I. C.; Abayaweera, G. S.; Nanayakkara, C. M.; Abeytunga, D. T. U.; Lee, D. S. et al. Beijing urban particulate matter-induced injury and inflammation in human lung epithelial cells and the protective effects of fucosterol from Sargassum binderi (Sonder ex, J. Agardh). Environ. Res. 2019, 172, 150–158.

    CAS  Google Scholar 

  129. Sachdeva, K.; Do, D. C.; Zhang, Y.; Hu, X. Y.; Chen, J. S.; Gao, P. S. Environmental exposures and asthma development: Autophagy, mitophagy, and cellular senescence. Front. Immunol. 2019, 10, 2787.

    CAS  Google Scholar 

  130. Cao, X. W.; Wang, M.; Li, J. W.; Luo, Y.; Li, R. Q.; Yan, X. X.; Zhang, H. R. Fine particulate matter increases airway hyperresponsiveness through kallikrein-bradykinin pathway. Ecotoxicol. Environ. Saf. 2020, 195, 110491.

    CAS  Google Scholar 

  131. Mei, M.; Song, H. J.; Chen, L. N.; Hu, B.; Bai, R.; Xu, D. D.; Liu, Y.; Zhao, Y. L.; Chen, C. Y. Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice. Part. Fibre Toxicol. 2018, 15, 13.

    Google Scholar 

  132. Fairley, K. J.; Purdy, R.; Kearns, S.; Anderson, S. E.; Meade, B. Exposure to the immunosuppresant, perfluorooctanoic acid, enhances the murine IgE and airway hyperreactivity response to ovalbumin. Toxicol. Sci. 2007, 97, 375–383.

    CAS  Google Scholar 

  133. Manson, M. L.; Säfholm, J.; James, A.; Johnsson, A. K.; Bergman, P.; Al-Ameri, M.; Orre, A. C.; Kärrman-Mårdh, C.; Dahlén, S. E.; Adner, M. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J. Allergy Clin. Immunol. 2020, 145, 808–817.e2.

    CAS  Google Scholar 

  134. Miller, R. L.; Grayson, M. H.; Strothman, K. Advances in asthma: New understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J. Allergy Clin. Immunol. 2021, 148, 1430–1441.

    CAS  Google Scholar 

  135. Dong, G. H.; Tung, K. Y.; Tsai, C. H.; Liu, M. M.; Wang, D.; Liu, W.; Jin, Y. H.; Hsieh, W. S.; Lee, Y. L.; Chen, P. C. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of Taiwanese children. Environ. Health Perspect. 2013, 121, 507–513.

    Google Scholar 

  136. Kvalem, H. E.; Nygaard, U. C.; Lødrup Carlsen, K. C.; Carlsen, K. H.; Haug, L. S.; Granum, B. Perfluoroalkyl substances, airways infections, allergy and asthma related health outcomes—Implications of gender, exposure period and study design. Environ. Int. 2020, 134, 105259.

    CAS  Google Scholar 

  137. Zhu, Y.; Qin, X. D.; Zeng, X. W.; Paul, G.; Morawska, L.; Su, M. W.; Tsai, C. H.; Wang, S. Q.; Lee, Y. L.; Dong, G. H. Associations of serum perfluoroalkyl acid levels with T-helper cell-specific cytokines in children: By gender and asthma status. Sci. Total Environ. 2016, 559, 166–173.

    CAS  Google Scholar 

  138. Rundell, K. W.; Smoliga, J. M.; Bougault, V. Exercise-induced bronchoconstriction and the air we breathe. Immunol. Allergy Clin. North Am. 2018, 38, 183–204.

    Google Scholar 

  139. Yue, W. H.; Tong, L.; Liu, X. H.; Weng, X. Y.; Chen, X. Y.; Wang, D. Z.; Dudley, S. C.; Weir, E. K.; Ding, W. J.; Lu, Z. B. et al. Short term PM2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol. 2019, 22, 101161.

    CAS  Google Scholar 

  140. Wang, S. M.; Zhou, Q. X.; Tian, Y. Z.; Hu, X. G. The lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Environ. Sci. Technol. 2022, 56, 12368–12379.

    CAS  Google Scholar 

  141. Yang, H. M.; Antonini, J. M.; Barger, M. W.; Butterworth, L.; Roberts, B. R.; Ma, J. K.; Castranova, V.; Ma, J. Y. Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats. Environ. Health Perspect. 2001, 109, 515–521.

    CAS  Google Scholar 

  142. Liu, J. G.; Chen, X. Y.; Dou, M. S.; He, H.; Ju, M. H.; Ji, S. M.; Zhou, J.; Chen, C. C.; Zhang, D. H.; Miao, C. H. et al. Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. J. Thorac. Dis. 2019, 11, 2617–2627.

    CAS  Google Scholar 

  143. Li, D. H.; Li, Y. J.; Li, G. L.; Zhang, Y.; Li, J.; Chen, H. S. Fluorescent reconstitution on deposition of PM2.5 in lung and extrapulmonary organs. Proc. Natl. Acad. Sci. USA 2019, 116, 2488–2493.

    CAS  Google Scholar 

  144. Singh, T. S.; Lee, S.; Kim, H. H.; Choi, J. K.; Kim, S. H. Perfluorooctanoic acid induces mast cell-mediated allergic inflammation by the release of histamine and inflammatory mediators. Toxicol. Lett. 2012, 210, 64–70.

    CAS  Google Scholar 

  145. Wang, L. Q.; Liu, T.; Yang, S.; Sun, L.; Zhao, Z. Y.; Li, L. Y.; She, Y. C.; Zheng, Y. Y.; Ye, X. Y.; Bao, Q. et al. Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome. Nat. Commun. 2021, 12, 2915.

    CAS  Google Scholar 

  146. Impinen, A.; Longnecker, M. P.; Nygaard, U. C.; London, S. J.; Ferguson, K. K.; Haug, L. S.; Granum, B. Maternal levels of perfluoroalkyl substances (PFASs) during pregnancy and childhood allergy and asthma related outcomes and infections in the Norwegian Mother and Child (MoBa) cohort. Environ. Int. 2019, 124, 462–472.

    CAS  Google Scholar 

  147. Porter, A. K.; Kleinschmidt, S. E.; Andres, K. L.; Reusch, C. N.; Krisko, R. M.; Taiwo, O. A.; Olsen, G. W.; Longnecker, M. P. Antibody response to COVID-19 vaccines among workers with a wide range of exposure to per- and polyfluoroalkyl substances. Environ. Int. 2022, 169, 107537.

    CAS  Google Scholar 

  148. Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917.

    CAS  Google Scholar 

  149. Chen, Y. C.; Wu, Y.; Qi, Y.; Liu, S. J. Cell death pathways: The variable mechanisms underlying fine particulate matter-induced cytotoxicity. ACS Nanosci. Au 2023, 3, 130–139.

    CAS  Google Scholar 

  150. Coleman, N. C.; Burnett, R. T.; Ezzati, M.; Marshall, J. D.; Robinson, A. L.; Pope III, C. A. Fine particulate matter exposure and cancer incidence: Analysis of SEER cancer registry data from 1992–2016. Environ. Health Perspect. 2020, 128, 107004.

    Google Scholar 

  151. Guo, H. G.; Chang, Z.; Wu, J. S.; Li, W. F. Air pollution and lung cancer incidence in China: Who are faced with a greater effect. Environ. Int. 2019, 132, 105077.

    CAS  Google Scholar 

  152. Luo, F.; Guo, H. Q.; Yu, H. Y.; Li, Y.; Feng, Y.; Wang, Y. PM2.5 organic extract mediates inflammation through the ERβ pathway to contribute to lung carcinogenesis in vitro and vivo.. Chemosphere 2021, 263, 127867.

    CAS  Google Scholar 

  153. Guo, H. Q.; Feng, Y.; Yu, H. Y.; Xie, Y. C.; Luo, F.; Wang, Y. A novel lncRNA, loc107985872, promotes lung adenocarcinoma progression via the notch1 signaling pathway with exposure to traffic-originated PM2.5 organic extract. Environ. Pollut. 2020, 266, 115307.

    CAS  Google Scholar 

  154. Pan, J. Y.; Xue, Y. G.; Li, S. L.; Wang, L. X.; Mei, J.; Ni, D. Q.; Jiang, J. P.; Zhang, M.; Yi, S. Q.; Zhang, R. et al. PM2.5 induces the distant metastasis of lung adenocarcinoma via promoting the stem cell properties of cancer cells. Environ. Pollut. 2022, 296, 118718.

    CAS  Google Scholar 

  155. Kim, S.; Thapar, I.; Brooks, B. W. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). Environ. Pollut. 2021, 279, 116929.

    CAS  Google Scholar 

  156. Shatseva, T.; Lee, D. Y.; Deng, Z. Q.; Yang, B. B. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J. Cell Sci. 2011, 124, 2826–2836.

    CAS  Google Scholar 

  157. Mao, Z. X.; Xia, W.; Wang, J.; Chen, T.; Zeng, Q. Q.; Xu, B.; Li, W. Y.; Chen, X.; Xu, S. Q. Perfluorooctane sulfonate induces apoptosis in lung cancer A549 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. J. Appl. Toxicol. 2013, 33, 1268–1276.

    CAS  Google Scholar 

  158. Kelly-Schuette, K. A.; Fomum-Mugri, L.; Walker, J.; Hoppe, A.; Mbanugo, C. C.; Nikroo, N.; Oboh, O.; Wright, G. P.; Chung, M.; Assifi, M. M. Tumor and serum levels of per- and polyfluoroalkyl (PFAS) in hepatobiliary and gastrointestinal malignancy. Am. J. Surg. 2022, 223, 514–518.

    Google Scholar 

  159. Xie, M. Y.; Sun, X. F.; Wu, C. C.; Huang, G. L.; Wang, P.; Lin, Z. Y.; Liu, Y. W.; Liu, L. Y.; Zeng, E. Y. Glioma is associated with exposure to legacy and alternative per- and polyfluoroalkyl substances. J. Hazard. Mater. 2023, 441, 129819.

    CAS  Google Scholar 

  160. Cao, L. P.; Guo, Y.; Chen, Y. C.; Hong, J. W.; Wu, J.; Jin, H. B. Per-/polyfluoroalkyl substance concentrations in human serum and their associations with liver cancer. Chemosphere 2022, 296, 134083.

    CAS  Google Scholar 

  161. Zhang, J. L.; Liu, C.; Zhao, G. R.; Li, M.; Ma, D.; Meng, Q. G.; Tang, W. L.; Huang, Q. R.; Shi, P. M.; Li, Y. Z. et al. PM2.5 synergizes with Pseudomonas aeruginosa to suppress alveolar macrophage function in mice through the mTOR pathway. Front. Pharmacol. 2022, 13, 924242.

    CAS  Google Scholar 

  162. Zhao, C.; Wang, Y.; Su, Z. L.; Pu, W. Y.; Niu, M. Y.; Song, S. Y.; Wei, L. L.; Ding, Y. B.; Xu, L. Z.; Tian, M. et al. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. Sci. Total Environ. 2020, 730, 139145.

    CAS  Google Scholar 

  163. Zhang, L.; He, X.; Xiong, Y.; Ran, Q.; Xiong, A. Y.; Wang, J. Y.; Wu, D. H.; Niu, B.; Li, G. P. Transcriptome-wide profiling discover: PM2.5 aggravates airway dysfunction through epithelial barrier damage regulated by Stanniocalcin 2 in an OVA-induced model. Ecotoxicol. Environ. Saf. 2021, 220, 112408.

    CAS  Google Scholar 

  164. He, X.; Zhang, L.; Hu, L. J.; Liu, S. B.; Xiong, A. Y.; Wang, J. Y.; Xiong, Y.; Li, G. PM2.5 aggravated OVA-induced epithelial tight junction disruption through Fas associated via death domain-dependent apoptosis in asthmatic mice. J. Asthma Allergy 2021, 14, 1411–1423.

    CAS  Google Scholar 

  165. Zhang, Y. T.; Zhang, L. K.; Chen, W. W.; Zhang, Y. Y.; Wang, X. M.; Dong, Y. Y.; Zhang, W. X.; Lin, X. X. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicol. Lett. 2021, 350, 62–70.

    CAS  Google Scholar 

  166. Li, F. F.; Shen, J.; Shen, H. J.; Zhang, X.; Cao, R.; Zhang, Y.; Qui, Q.; Lin, X. X.; Xie, Y. C.; Zhang, L. H. et al. Shp2 plays an important role in acute cigarette smoke-mediated lung inflammation. J. Immunol. 2012, 189, 3159–3167.

    CAS  Google Scholar 

  167. Salem, I. H.; Plante, S.; Gounni, A. S.; Rouabhia, M.; Chakir, J. A shift in the IL-6/STAT3 signalling pathway imbalance towards the SHP2 pathway in severe asthma results in reduced proliferation process. Cell. Signal. 2018, 43, 47–54.

    CAS  Google Scholar 

  168. Zhang, X.; Zhang, Y.; Tao, B.; Teng, L.; Li, Y. W.; Cao, R.; Gui, Q.; Ye, M. D.; Mou, X. Z.; Cheng, H. Q. et al. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB J. 2012, 26, 2338–2350.

    CAS  Google Scholar 

  169. Kim, S. S.; Kim, C. H.; Kim, J. W.; Kung, H. C.; Park, T. W.; Shin, Y. S.; Kim, J. D.; Ryu, S.; Kim, W. J.; Choi, Y. H. et al. Airborne particulate matter increases MUA5AC expression by downregulating Claudin-1 expression in human airway cells. BMB Rep. 2017, 50, 516–521.

    Google Scholar 

  170. Yu, H. J.; Lin, Y. N.; Zhong, Y.; Guo, X. L.; Lin, Y. Y.; Yang, S. Q.; Liu, J. L.; Xie, X. R.; Sun, Y. W.; Wang, D. et al. Impaired AT2 to AT1 cell transition in PM2.5-induced mouse model of chronic obstructive pulmonary disease. Respir. Res. 2022, 23, 70.

    Google Scholar 

  171. Barkauskas, C. E.; Cronce, M. J.; Rackley, C. R.; Bowie, E. J.; Keene, D. R.; Stripp, B. R.; Randell, S. H.; Noble, P. W.; Hogan, B. L. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 2013, 123, 3025–3036.

    CAS  Google Scholar 

  172. Mason, R. J. Biology of alveolar type II cells. Respirology 2006, 11, S12–S15.

    Google Scholar 

  173. Desai, T. J.; Brownfield, D. G.; Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014, 507, 190–194.

    CAS  Google Scholar 

  174. Tolkach, P. G.; Basharin, V. A.; Chepur, S. V.; Gorshkov, A. N.; Sizova, D. T. Ultrastructural changes in the air-blood barrier of rats in acute intoxication with furoplast pyrolysis products. Bull. Exp. Biol. Med. 2020, 169, 270–275.

    CAS  Google Scholar 

  175. Lucas, J. H.; Wang, Q. X.; Rahman, I. Perfluorooctane sulfonic acid disrupts protective tight junction proteins via protein kinase D in airway epithelial cells. Toxicol. Sci. 2022, 190, 215–226.

    CAS  Google Scholar 

  176. Meng, G.; Zhao, J.; Wang, H. M.; Ding, R. G.; Zhang, X. C.; Huang, C. Q.; Ruan, J. X. Injury of cell tight junctions and changes of actin level in acute lung injury caused by the perfluoroisobutylene exposure and the role of myosin light chain kinase. J. Occup. Health 2011, 53, 250–257.

    CAS  Google Scholar 

  177. Kleinschmidt, E. G.; Schlaepfer, D. D. Focal adhesion kinase signaling in unexpected places. Curr. Opin. Cell Biol. 2017, 45, 24–30.

    CAS  Google Scholar 

  178. Respiratory System (Histophysiology, Evolution, Biochemistry, Pathology and Treatment of Bronchial Asthma): Textbook. Blagoveshchensk: Russia, 2010.

  179. Tolkach, P. G.; Basharin, V. A.; Chepur, S. V.; Vladimirova, O. O.; Alekseeva, I. I.; Solovyeva, T. S. Mechanisms of pulmonary toxicity of perfluoro-n-alkane pyrolysis products with consideration of the structural features of the blood-air barriers. Bull. Exp. Biol. Med. 2020, 168, 345–348.

    CAS  Google Scholar 

  180. Kumar, V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front. Immunol. 2020, 11, 1722.

    CAS  Google Scholar 

  181. Liu, Y. N.; Yuan, Q.; Zhang, X. J.; Chen, Z. Q.; Jia, X. Y.; Wang, M.; Xu, T. T.; Wang, Z. X.; Jiang, J. X.; Ma, Q. Y. et al. Fine particulate matter (PM2.5) induces inhibitory memory alveolar macrophages through the AhR/IL-33 pathway. Cell. Immunol. 2023, 386, 104694.

    CAS  Google Scholar 

  182. Sun, L. C.; Fu, J. R.; Lin, S. H.; Sun, J. L.; Xia, L.; Lin, C. H.; Liu, L. J.; Zhang, C. Y.; Yang, L.; Xue, P. et al. Particulate matter of 2.5 µm or less in diameter disturbs the balance of TH17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1a in an asthma model. J. Allergy Clin. Immunol. 2020, 145, 402–414.

    CAS  Google Scholar 

  183. Dong, G. H.; Liu, M. M.; Wang, D.; Zheng, L.; Liang, Z. F.; Jin, Y. H. Sub-chronic effect of perfluorooctanesulfonate (PFOS) on the balance of type 1 and type 2 cytokine in adult C57BL6 mice. Arch. Toxicol. 2011, 85, 1235–1244.

    CAS  Google Scholar 

  184. Choy, D. F.; Hart, K. M.; Borthwick, L. A.; Shikotra, A.; Nagarkar, D. R.; Siddiqui, S.; Jia, G. Q.; Ohri, C. M.; Doran, E.; Vannella, K. M. et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med. 2015, 7, 301ra129.

    Google Scholar 

  185. Szabo, P. A.; Dogra, P.; Gray, J. I.; Wells, S. B.; Connors, T. J.; Weisberg, S. P.; Krupska, I.; Matsumoto, R.; Poon, M. M. L.; Idzikowski, E. et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 2021, 54, 797–814.e6.

    CAS  Google Scholar 

  186. Qazi, M. R.; Bogdanska, J.; Butenhoff, J. L.; Nelson, B. D.; DePierre, J. W.; Abedi-Valugerdi, M. High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology 2009, 262, 207–214.

    CAS  Google Scholar 

  187. Dewitt, J. C.; Copeland, C. B.; Strynar, M. J.; Luebke, R. W. Perfluorooctanoic acid-induced immunomodulation in adult C57BL/6J or C57BL/6N female mice. Environ. Health Perspect. 2008, 116, 644–650.

    CAS  Google Scholar 

  188. Son, H. Y.; Lee, S.; Tak, E. N.; Cho, H. S.; Shin, H. I.; Kim, S. H.; Yang, J. H. Perfluorooctanoic acid alters T lymphocyte phenotypes and cytokine expression in mice. Environ. Toxicol. 2009, 24, 580–588.

    CAS  Google Scholar 

  189. Liu, G.; Summer, R. Cellular metabolism in lung health and disease. Annu. Rev. Physiol. 2019, 81, 403–428.

    CAS  Google Scholar 

  190. Li, J. L.; Hu, Y. R.; Liu, L. J.; Wang, Q.; Zeng, J. H.; Chen, C. S. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Sci. Total Environ. 2020, 721, 137432.

    CAS  Google Scholar 

  191. Song, X. Y.; Liu, J. H.; Geng, N. B.; Shan, Y. C.; Zhang, B. Q.; Zhao, B. F.; Ni, Y. W.; Liang, Z.; Chen, J. P.; Zhang, L. H. et al. Multi-omics analysis to reveal disorders of cell metabolism and integrin signaling pathways induced by PM2.5. J. Hazard. Mater. 2022, 424, 127573.

    CAS  Google Scholar 

  192. Ning, X.; Ji, X. T.; Li, G. K.; Sang, N. Ambient PM2.5 causes lung injuries and coupled energy metabolic disorder. Ecotoxicol. Environ. Saf. 2019, 170, 620–626.

    CAS  Google Scholar 

  193. Yang, S. J.; Chen, R. C.; Zhang, L.; Sun, Q.; Li, R.; Gu, W. J.; Zhong, M. H.; Liu, Y.; Chen, L. C.; Sun, Q. H. et al. Lipid metabolic adaption to long-term ambient PM2.5 exposure in mice. Environ. Pollut. 2021, 269, 116193.

    CAS  Google Scholar 

  194. Sánchez-Soberón, F.; Cuykx, M.; Serra, N.; Linares, V.; Bellés, M.; Covaci, A.; Schuhmacher, M. In-vitro metabolomics to evaluate toxicity of particulate matter under environmentally realistic conditions. Chemosphere 2018, 209, 137–146.

    Google Scholar 

  195. Hu, R. J.; Zhang, L.; Qin, L.; Ding, H.; Li, R.; Gu, W. J.; Chen, R. C.; Zhang, Y. H.; Rajagoplan, S.; Zhang, K. Z. et al. Airborne PM2.5 pollution: A double-edged sword modulating hepatic lipid metabolism in middle-aged male mice. Environ. Pollut. 2023, 324, 121347.

    CAS  Google Scholar 

  196. Pan, Z. H.; Miao, W. Y.; Wang, C. Y.; Tu, W. Q.; Jin, C. Y.; Jin, Y. X. 6:2 Cl-PFESA has the potential to cause liver damage and induce lipid metabolism disorders in female mice through the action of PPAR-gamma. Environ. Pollut. 2021, 287, 117329.

    CAS  Google Scholar 

  197. Li, R. J; Wang, Y. X.; Chen, R. C.; Gu, W. J.; Zhang, L.; Gu, J. G.; Wang, Z. Y.; Liu, Y.; Sun, Q. H.; Zhang, K. Z. et al. Ambient fine particulate matter disrupts hepatic circadian oscillation and lipid metabolism in a mouse model. Environ. Pollut. 2020, 262, 114179.

    CAS  Google Scholar 

  198. Wang, Y. X.; Li, R.; Chen, R. C.; Gu, W. J.; Zhang, L.; Gu, J. G.; Wang, Z. Y.; Liu, Y.; Sun, Q. H.; Zhang, K. Z. et al. Ambient fine particulate matter exposure perturbed circadian rhythm and oscillations of lipid metabolism in adipose tissues. Chemosphere 2020, 251, 126392.

    CAS  Google Scholar 

  199. Alderete, T. L.; Jin, R.; Walker, D. I.; Valvi, D.; Chen, Z. H.; Jones, D. P.; Peng, C.; Gilliland, F. D.; Berhane, K.; Conti, D. V. et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. Environ. Int. 2019, 126, 445–453.

    CAS  Google Scholar 

  200. Chen, Z. H.; Yang, T. Y.; Walker, D. I.; Thomas, D. C.; Qiu, C. Y.; Chatzi, L.; Alderete, T. L.; Kim, J. S.; Conti, D. V.; Breton, C. V. et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ. Int. 2020, 145, 106091.

    CAS  Google Scholar 

  201. Hong, S. H.; Lee, S. H.; Yang, J. Y.; Lee, J. H.; Jung, K. K.; Seok, J. H.; Kim, S. H.; Nam, K. T.; Jeong, J.; Lee, J. K. et al. Orally administered 6: 2 chlorinated polyfluorinated ether sulfonate (F-53B) causes thyroid dysfunction in rats. Toxics 2020, 8, 54.

    CAS  Google Scholar 

  202. Zhang, H. X.; Zhou, X. J.; Sheng, N.; Cui, R. N.; Cui, Q. Q.; Guo, H.; Guo, Y.; Sun, Y.; Dai, J. Y. Subchronic hepatotoxicity effects of 6: 2 chlorinated polyfluorinated ether sulfonate (6: 2 Cl-PFESA), a novel perfluorooctanesulfonate (PFOS) alternative, on adult male mice. Environ. Sci. Technol. 2018, 52, 12809–12818.

    CAS  Google Scholar 

  203. Wang, X. Y.; Cui, X. J.; Zhao, Y. L.; Chen, C. Y. Nano-bio interactions: The implication of size-dependent biological effects of nanomaterials. Sci. China Life Sci. 2020, 63, 1168–1182.

    CAS  Google Scholar 

  204. http://www.gov.cn/zhengce/2022-12/30/content_5734728.htm (accessed Jun 15, 2023).

  205. https://eur-lex.europa.eu/eli/reg/2019/1021/oj (accessed Jun 6, 2023).

  206. https://toxicsinpackaging.org/model-legislation/model/ (accessed Jun 12, 2023).

  207. https://apps.ecology.wa.gov/publications/SummaryPages/2104007.html (accessed May 13, 2023).

  208. https://apps.ecology.wa.gov/publications/SummaryPages/2104048.html (accessed Jun 15, 2023).

  209. https://www.revisor.mn.gov/statutes/cite/325F.075 (accessed Jun 15, 2023).

  210. https://legiscan.com/RI/bill/H7438/2022 (accessed Jun 15, 2023).

  211. https://news.3m.com/2022-12-20-3M-to-Exit-PFAS-Manufacturing-by-the-End-of-2025 (accessed Jun 17, 2023).

  212. Janousek, R. M.; Lebertz, S.; Knepper, T. P. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics. Environ. Sci.:Process. Impacts 2019, 21, 1936–1945.

    CAS  Google Scholar 

  213. Dhore, R.; Murthy, G. S. Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresour. Technol. 2021, 341, 125808.

    CAS  Google Scholar 

  214. Medeiros, F. S. Jr; Mota, C.; Chaudhuri, P. Perfluoropropionic acid-driven nucleation of atmospheric molecules under ambient conditions. J. Phys. Chem. A 2022, 126, 8449–8458.

    Google Scholar 

  215. Park, S.; Lee, L. S.; Ross, I.; Hurst, J. Evaluating perfluorooctanesulfonate oxidation in permanganate systems. Environ. Sci. Pollut. Res. Int. 2020, 27, 13976–13984.

    CAS  Google Scholar 

  216. Hu, Y. B.; Lo, S. L.; Li, Y. F.; Lee, Y. C.; Chen, M. J.; Lin, J. C. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system. Water Res. 2018, 140, 148–157.

    CAS  Google Scholar 

  217. Shields, E. P.; Wallace, M. A. G. Low temperature destruction of gas-phase per- and polyfluoroalkyl substances using an alumina-based catalyst. J. Air Waste Manag. Assoc. 2023, 73, 525–532.

    CAS  Google Scholar 

  218. Li, C.; Mi, N.; Chen, Z. H.; Gu, C. Photodegradation of hexafluoropropylene oxide trimer acid under UV irradiation. J. Environ. Sci. 2020, 97, 132–140.

    CAS  Google Scholar 

  219. Verma, S.; Mezgebe, B.; Sahle-Demessie, E.; Nadagouda, M. N. Photooxidative decomposition and defluorination of perfluorooctanoic acid (PFOA) using an innovative technology of UV-vis/ZnxCu1−xFe2O4/oxalic acid. Chemosphere 2021, 280, 130660.

    CAS  Google Scholar 

  220. Liu, G. S.; Feng, C. J.; Shao, P. H. Degradation of perfluorooctanoic acid with hydrated electron by a heterogeneous catalytic system. Environ. Sci. Technol. 2022, 56, 6223–6231.

    CAS  Google Scholar 

  221. Wu, C. Y.; Klemes, M. J.; Trang, B.; Dichtel, W. R.; Helbling, D. E. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Res. 2020, 182, 115950.

    CAS  Google Scholar 

  222. Gao, K.; Zhuang, T. F.; Liu, X.; Fu, J. J.; Zhang, J. X.; Fu, J.; Wang, L. G.; Zhang, A. Q.; Liang, Y.; Song, M. Y. et al. Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) and association between the placental transfer efficiencies and dissociation constant of serum proteins-PFAS complexes. Environ. Sci. Technol. 2019, 53, 6529–6538.

    CAS  Google Scholar 

  223. Shearer, J. J.; Callahan, C. L.; Calafat, A. M.; Huang, W. Y.; Jones, R. R.; Sabbisetti, V. S.; Freedman, N. D.; Sampson, J. N.; Silverman, D. T.; Purdue, M. P. et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J. Natl. Cancer Inst. 2021, 113, 580–587.

    Google Scholar 

  224. Donat-Vargas, C.; Bergdahl, I. A.; Tornevi, A.; Wennberg, M.; Sommar, J.; Kiviranta, H.; Koponen, J.; Rolandsson, O.; Akesson, A. Perfluoroalkyl substances and risk of type II diabetes: A prospective nested case-control study. Environ. Int. 2019, 123, 390–398.

    CAS  Google Scholar 

  225. Podder, A.; Sadmani, A. H. M. A.; Reinhart, D.; Chang, N. B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361.

    CAS  Google Scholar 

  226. Liu, Y. P.; Zhu, S.; Gu, Z. J.; Chen, C. Y.; Zhao, Y. L. Toxicity of manufactured nanomaterials. Particuology 2022, 69, 31–48.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Research Plan-Integrated Program of National Natural Science Foundation of China (No. 92143301), the National Natural Science Foundation of China (No. 31971318), and Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Science (No. CIFMS 2019-I2M-5-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Mei, J., Jiang, J. et al. PFAS in PMs might be the escalating hazard to the lung health. Nano Res. 16, 13113–13133 (2023). https://doi.org/10.1007/s12274-023-6051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6051-x

Keywords

Navigation