Skip to main content
Log in

Inorganic ionic polymerization: From biomineralization to materials manufacturing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biomineralization process regulates the growth of inorganic minerals by complex molecules, proteins, and cells, endowing bio-materials with marvels structures and excellent properties. The intricate structures and compositions found in biominerals have inspired scientists to design and synthesize numerous artificial biomimetic materials. The methodology for controlling the formation of inorganics plays a pivotal role in achieving biomimetic structures and compositions. However, the current approach predominantly relies on the classical nucleation theory, which hinders the precise preparation of inorganic materials by replicating the biomineralization strategy. Recently, the development of “inorganic ionic polymerization” strategy has enabled us to regulate the arrangement of inorganic ions from solution to solid phase, which establishes an artificial way to produce inorganic materials analogous to the biomineralization process. Based on inorganic ionic polymerization, a series of achievements have been realized for the biomimetic preparation, including moldable construction of inorganic materials, hard tissue regeneration, and high-performance biomimetic materials. Moreover, the utilization of inorganic ionic polymerization has also facilitated the production of numerous advanced materials, including novel structures that exceed the current knowledge of materials science. The inorganic ionic polymerization system provides new artificial strategies and methodologies for the controllable synthesis of inorganics, which mimics the biomineralization process, paving the way for the future development of more high-performance materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, S. S.; Jin, B.; Liu, Z. M.; Shao, C. Y.; Zhao, R. B.; Wang, X. Y.; Tang, R. K. Biomineralization: From material tactics to biological strategy. Adv. Mater. 2017, 29, 1605903.

    Article  Google Scholar 

  2. Gebauer, D.; Völkel, A.; Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 2008, 322, 1819–1822.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wallace, A. F.; Hedges, L. O.; Fernandez-Martinez, A.; Raiteri, P.; Gale, J. D.; Waychunas, G. A.; Whitelam, S.; Banfield, J. F.; De Yoreo, J. J. Microscopic evidence for liquid–liquid separation in supersaturated CaCO3 solutions. Science 2013, 341, 885–889.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mahamid, J.; Aichmayer, B.; Shimoni, E.; Ziblat, R.; Li, C. H.; Siegel, S.; Paris, O.; Fratzl, P.; Weiner, S.; Addadi, L. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl. Acad. Sci. USA 2010, 107, 6316–6321.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weiss, I. M.; Tuross, N.; Addadi, L.; Weiner, S. Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool. 2002, 293, 478–491.

    Article  CAS  PubMed  Google Scholar 

  6. Yao, H. B.; Ge, J.; Mao, L. B.; Yan, Y. X.; Yu, S. H. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: Synthesis, fabrication and applications. Adv. Mater. 2014, 26, 163–187.

    Article  CAS  PubMed  Google Scholar 

  7. He, W. X.; Rajasekharan, A. K.; Tehrani-Bagha, A. R.; Andersson, M. Mesoscopically ordered bone-mimetic nanocomposites. Adv. Mater. 2015, 27, 2260–2264.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y.; Luo, D.; Wang, T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small 2016, 12, 4611–4632.

    Article  CAS  PubMed  Google Scholar 

  9. Palmer, L. C.; Newcomb, C. J.; Kaltz, S. R.; Spoerke, E. D.; Stupp, S. I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 2008, 108, 4754–4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shavit, K.; Wagner, A.; Schertel, L.; Farstey, V.; Akkaynak, D.; Zhang, G.; Upcher, A.; Sagi, A.; Yallapragada, V. J.; Haataja, J. et al. A tunable reflector enabling crustaceans to see but not be seen. Science 2023, 379, 695–700.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Canal, C.; Pastorino, D.; Mestres, G.; Schuler, P.; Ginebra, M. P. Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomater. 2013, 9, 8403–8412.

    Article  CAS  PubMed  Google Scholar 

  13. Su, Y. C.; Cockerill, I.; Zheng, Y. F.; Tang, L. P.; Qin, Y. X.; Zhu, D. H. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact. Mater. 2019, 4, 196–206.

    PubMed  PubMed Central  Google Scholar 

  14. Guo, P.; Liu, X. Z.; Zhang, P. H.; He, Z. Y.; Li, Z.; Alini, M.; Richards, R. G.; Grad, S.; Stoddart, M. J.; Zhou, G. Q. et al. A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioact. Mater. 2022, 9, 281–298.

    CAS  PubMed  Google Scholar 

  15. Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Peng, J. S.; Huang, C. J.; Cao, C.; Saiz, E.; Du, Y.; Dou, S. X.; Tomsia, A. P.; Wagner, H. D.; Jiang, L.; Cheng, Q. F. Inverse nacrelike epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter 2020, 2, 220–232.

    Article  Google Scholar 

  17. Guan, Q. F.; Yang, H. B.; Han, Z. M.; Ling, Z. C.; Yu, S. H. An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 2020, 11, 5401.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, H. G.; Lu, R. J.; Yan, J.; Peng, J. S.; Tomsia, A. P.; Liang, R.; Sun, G. X.; Liu, M. J.; Jiang, L.; Cheng, Q. F. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem., Int. Ed. 2023, 62, e202216874.

    Article  CAS  Google Scholar 

  19. Yeom, B.; Sain, T.; Lacevic, N.; Bukharina, D.; Cha, S. H.; Waas, A. M.; Arruda, E. M.; Kotov, N. A. Abiotic tooth enamel. Nature 2017, 543, 95–98.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zhao, H. W.; Liu, S. J.; Wei, Y.; Yue, Y. H.; Gao, M. R.; Li, Y. B.; Zeng, X. L.; Deng, X. L.; Kotov, N. A.; Guo, L. et al. Multiscale engineered artificial tooth enamel. Science 2022, 375, 551–556.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

    Article  ADS  CAS  Google Scholar 

  22. Xiong, W.; Zhao, X. H.; Zhu, G. X.; Shao, C. Y.; Li, Y. L.; Ma, W. M.; Xu, X. R.; Tang, R. K. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions. Angew. Chem., Int. Ed. 2015, 54, 11961–11965.

    Article  CAS  Google Scholar 

  23. Wang, G. C.; Cao, R. Y.; Chen, R.; Mo, L. J.; Han, J. F.; Wang, X. Y.; Xu, X. R.; Jiang, T.; Deng, Y. Q.; Lyu, K. et al. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 7619–7624.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, B.; Liu, P.; Jiang, W. G.; Pan, H. H.; Xu, X. R.; Tang, R. K. Yeast cells with an artificial mineral shell: Protection and modification of living cells by biomimetic mineralization. Angew. Chem., Int. Ed. 2008, 47, 3560–3564.

    Article  CAS  Google Scholar 

  25. Zhao, Y. Q.; Fan, M. J.; Chen, Y. N.; Liu, Z. M.; Shao, C. Y.; Jin, B.; Wang, X. Y.; Hui, L. L.; Wang, S. F.; Liao, Z. P. et al. Surface-anchored framework for generating RhD-epitope stealth red blood cells. Sci. Adv. 2020, 6, eaaw9679.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao, H. B.; Wu, S. P.; Lin, J. K.; Zheng, Z. T.; Zhou, Y. M.; Zhang, Y.; Guo, Q.; Tian, F. C.; Zhao, M. S.; Chen, Y. et al. Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel. Nat. Biomed. Egg., in press, https://doi.org/10.1038/s41551-023-01014-4.

  27. Ping, H.; Wagermaier, W.; Horbelt, N.; Scoppola, E.; Li, C. G.; Werner, P.; Fu, Z. Y.; Fratzl, P. Mineralization generates megapascal contractile stresses in collagen fibrils. Science 2022, 376, 188–192.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ma, Y. X.; Jiao, K.; Wan, Q. Q.; Li, J.; Liu, M. Y.; Zhang, Z. B.; Qin, W.; Wang, K. Y.; Wang, Y. Z.; Tay, F. R. et al. Silicified collagen scaffold induces semaphorin 3A secretion by sensory nerves to improve in-situ bone regeneration. Bioact. Mater. 2022, 9, 475–490.

    CAS  PubMed  Google Scholar 

  29. Sun, J. L.; Jiao, K.; Niu, L. N.; Jiao, Y.; Song, Q.; Shen, L. J.; Tay, F. R.; Chen, J. H. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials 2017, 113, 203–216.

    Article  CAS  PubMed  Google Scholar 

  30. Xu, Y. F.; Nudelman, F.; Eren, E. D.; Wirix, M. J. M.; Cantaert, B.; Nijhuis, W. H.; Hermida-Merino, D.; Portale, G.; Bomans, P. H. H.; Ottmann, C. et al. Intermolecular channels direct crystal orientation in mineralized collagen. Nat. Commun. 2020, 11, 5068.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cherniukh, I.; Rainò, G.; Stöferle, T.; Burian, M.; Travesset, A.; Naumenko, D.; Amenitsch, H.; Erni, R.; Mahrt, R. F.; Bodnarchuk, M. I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 2021, 593, 535–542.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Picker, A.; Nicoleau, L.; Burghard, Z.; Bill, J.; Zlotnikov, I.; Labbez, C.; Nonat, A.; Cölfen, H. Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Sci. Adv. 2017, 3, e1701216.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Santos, P. J.; Gabrys, P. A.; Zornberg, L. Z.; Lee, M. S.; Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 2021, 591, 586–591.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Cölfen, H.; Antonietti, M. Mesocrystals and Nonclassical Crystallization; Wiley and Sons: Hoboken, 2008.

    Book  Google Scholar 

  35. De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

    Article  PubMed  Google Scholar 

  36. Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Lupulescu, A. I.; Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 2014, 344, 729–732.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Mass, T.; Giuffre, A. J.; Sun, C. Y.; Stifler, C. A.; Frazier, M. J.; Neder, M.; Tamura, N.; Stan, C. V.; Marcus, M. A.; Gilbert, P. U. P. A. Amorphous calcium carbonate particles form coral skeletons. Proc. Natl. Acad. Sci. USA 2017, 114, E7670–E7678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, C. Y.; Stifler, C. A.; Chopdekar, R. V.; Schmidt, C. A.; Parida, G.; Schoeppler, V.; Fordyce, B. I.; Brau, J. H.; Mass, T.; Tambutté, S. et al. From particle attachment to space-filling coral skeletons. Proc. Natl. Acad. Sci. USA 2020, 117, 30159–30170.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

    Article  CAS  PubMed  Google Scholar 

  42. Burton, W. K.; Cabrera, N.; Frank, F. C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. Roy. A: Math. Phys. Eng. Sci. 1951, 243, 299–358.

    ADS  MathSciNet  Google Scholar 

  43. Martin, J. D. Particle size is a primary determinant for sigmoidal kinetics of nanoparticle formation: A “disproof” of the Finke–Watzky (F–W) nanoparticle nucleation and growth mechanism. Chem. Mater. 2020, 32, 3651–3656.

    Article  ADS  CAS  Google Scholar 

  44. Miyoshi, H.; Kimizuka, H.; Ishii, A.; Ogata, S. Temperature-dependent nucleation kinetics of Guinier–Preston zones in Al-Cu alloys: An atomistic kinetic Monte Carlo and classical nucleation theory approach. Acta Mater. 2019, 179, 262–272.

    Article  ADS  CAS  Google Scholar 

  45. Zeglinski, J.; Kuhs, M.; Devi, K. R.; Khamar, D.; Hegarty, A. C.; Thompson, D.; Rasmuson, Å. C. Probing crystal nucleation of fenoxycarb from solution through the effect of solvent. Cryst. Growth Des. 2019, 19, 2037–2049.

    Article  CAS  Google Scholar 

  46. Kim, D.; Lee, B.; Thomopoulos, S.; Jun, Y. S. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat. Commun. 2018, 9, 962.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Yuan, K.; Starchenko, V.; Rampal, N.; Yang, F. C.; Yang, X. G.; Xiao, X. H.; Lee, W. K.; Stack, A. G. Opposing effects of impurity ion Sr2+ on the heterogeneous nucleation and growth of barite (BaSO4). Cryst. Growth Des. 2021, 21, 5828–5839.

    Article  CAS  Google Scholar 

  48. Lahiri, J.; Xu, G. F.; Dabbs, D. M.; Yao, N.; Aksay, I. A.; Groves, J. T. Porphyrin amphiphiles as templates for the nucleation of calcium carbonate. J. Am. Chem. Soc. 1997, 119, 5449–5450.

    Article  CAS  Google Scholar 

  49. Noorduin, W. L.; Grinthal, A.; Mahadevan, L.; Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 2013, 340, 832–837.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Kaplan, C. N.; Noorduin, W. L.; Li, L.; Sadza, R.; Folkertsma, L.; Aizenberg, J.; Mahadevan, L. Controlled growth and form of precipitating microsculptures. Science 2017, 355, 1395–1399.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  51. Banfield, J. F.; Welch, S. A.; Zhang, H. Z.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751–754.

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 12096–12101.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilbert, P. U. P. A.; Porter, S. M.; Sun, C. Y.; Xiao, S. H.; Gibson, B. M.; Shenkar, N.; Knoll, A. H. Biomineralization by particle attachment in early animals. Proc. Natl. Acad. Sci. USA 2019, 116, 17659–17665.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gower, L. B.; Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2000, 210, 719–734.

    Article  ADS  CAS  Google Scholar 

  55. Xu, Y. F.; Tijssen, K. C. H.; Bomans, P. H. H.; Akiva, A.; Friedrich, H.; Kentgens, A. P. M.; Sommerdijk, N. A. J. M. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nat. Commun. 2018, 9, 2582.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, Y.; Gower, L.; Volkmer, D.; Cölfen, H. Hierarchical dl-glutamic acid microspheres from polymer-induced liquid precursors. Cryst. Growth Des. 2011, 11, 3243–3249.

    Article  CAS  Google Scholar 

  57. Nudelman, F.; Pieterse, K.; George, A.; Bomans, P. H. H.; Friedrich, H.; Brylka, L. J.; Hilbers, P. A.; de With, G.; Sommerdijk, N. A. J. M. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 2010, 9, 1004–1009.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun, S. T.; Mao, L. B.; Lei, Z. Y.; Yu, S. H.; Cölfen, H. Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics”. Angew. Chem., Int. Ed. 2016, 55, 11765–11769.

    Article  CAS  Google Scholar 

  59. Yao, S. S.; Lin, X. F.; Xu, Y. F.; Chen, Y. W.; Qiu, P. C.; Shao, C. Y.; Jin, B.; Mu, Z.; Sommerdijk, N. A. J. M.; Tang, R. K. Osteoporotic bone recovery by a highly bone-inductive calcium phosphate polymer-induced liquid-precursor. Adv. Sci. 2019, 6, 1900683.

    Article  CAS  Google Scholar 

  60. Zhu, G. M.; Sushko, M. L.; Loring, J. S.; Legg, B. A.; Song, M.; Soltis, J. A.; Huang, X. P.; Rosso, K. M.; De Yoreo, J. J. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature 2021, 590, 416–422.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Liu, Z. M.; Pan, H. H.; Zhu, G. X.; Li, Y. L.; Tao, J. H.; Jin, B.; Tang, R. K. Realignment of nanocrystal aggregates into single crystals as a result of inherent surface stress. Angew. Chem., Int. Ed. 2016, 55, 12836–12840.

    Article  CAS  Google Scholar 

  62. Choudhary, M. K.; Kumar, M.; Rimer, J. D. Regulating nonclassical pathways of silicalite-1 crystallization through controlled evolution of amorphous precursors. Angew. Chem., Int. Ed. 2019, 58, 15712–15716.

    Article  CAS  Google Scholar 

  63. Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 2013, 135, 5038–5043.

    Article  CAS  PubMed  Google Scholar 

  64. Kahil, K.; Weiner, S.; Addadi, L.; Gal, A. Ion pathways in biomineralization: Perspectives on uptake, transport, and deposition of calcium, carbonate, and phosphate. J. Am. Chem. Soc. 2021, 143, 21100–21112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pouget, E. M.; Bomans, P. H. H.; Goos, J. A. C. M.; Frederik, P. M.; de With, G.; Sommerdijk, N. A. J. M. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 2009, 323, 1455–1458.

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Demichelis, R.; Raiteri, P.; Gale, J. D.; Quigley, D.; Gebauer, D. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun. 2011, 2, 590.

    Article  ADS  PubMed  Google Scholar 

  67. Dey, A.; Bomans, P. H.; Müller, F. A.; Will, J.; Frederik, P. M.; de With, G.; Sommerdijk, N. A. J. M. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 2010, 9, 1010–1014.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Habraken, W. J. E. M.; Tao, J. H.; Brylka, L. J.; Friedrich, H.; Bertinetti, L.; Schenk, A. S.; Verch, A.; Dmitrovic, V.; Bomans, P. H. H.; Frederik, P. M. et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013, 4, 1507.

    Article  ADS  PubMed  Google Scholar 

  69. Smeets, P. J. M.; Finney, A. R.; Habraken, W. J. E. M.; Nudelman, F.; Friedrich, H.; Laven, J.; De Yoreo, J. J.; Rodger, P. M.; Sommerdijk, N. A. J. M. A classical view on nonclassical nucleation. Proc. Natl. Acad. Sci. USA 2017, 114, E7882–E7890.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Henzler, K.; Fetisov, E. O.; Galib, M.; Baer, M. D.; Legg, B. A.; Borca, C.; Xto, J. M.; Pin, S.; Fulton, J. L.; Schenter, G. K. et al. Supersaturated calcium carbonate solutions are classical. Sci. Adv. 2018, 4, eaao6283.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Xu, X. X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527–12535.

    Article  CAS  PubMed  Google Scholar 

  73. Xu, X. X.; Wang, X. Fine tuning of the sizes and phases of ZrO2 nanocrystals. Nano Res. 2001, 2, 891–902.

    Article  Google Scholar 

  74. Zhao, Y.; Lu, Y.; Hu, Y.; Li, J. P.; Dong, L.; Lin, L. N.; Yu, S. H. Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy. Small 2010, 6, 2436–2442.

    Article  CAS  PubMed  Google Scholar 

  75. Du, W. X.; Liu, T. Z.; Xue, F. F.; Cai, X. J.; Chen, Q.; Zheng, Y. Y.; Chen, H. R. Fe3O4 mesocrystals with distinctive magnetothermal and nanoenzyme activity enabling self-reinforcing synergistic cancer therapy. ACS Appl. Mater. Interfaces 2020, 12, 19285–19294.

    Article  CAS  PubMed  Google Scholar 

  76. Ding, Z. P.; Zhang, D. T.; Feng, Y. M.; Zhang, F.; Chen, L. B.; Du, Y.; Ivey, D. G.; Wei, W. F. Tuning anisotropic ion transport in mesocrystalline lithium orthosilicate nanostructures with preferentially exposed facets. NPG Asia Mater. 2018, 10, 606–617.

    Article  CAS  Google Scholar 

  77. Huang, M. H.; Schilde, U.; Kumke, M.; Antonietti, M.; Cölfen, H. Polymer-induced self-assembly of small organic molecules into ultralong microbelts with electronic conductivity. J. Am. Chem. Soc. 2010, 132, 3700–3707.

    Article  CAS  PubMed  Google Scholar 

  78. Tétreault, N.; Horváth, E.; Moehl, T.; Brillet, J.; Smajda, R.; Bungener, S.; Cai, N.; Wang, P.; Zakeeruddin, S. M.; Forró, L. et al. High-efficiency solid-state dye-sensitized solar cells: Fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. ACS Nano 2010, 4, 7644–7650.

    Article  PubMed  Google Scholar 

  79. Hu, S.; Liu, H. L.; Wang, P. P.; Wang, X. Inorganic nanostructures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115–11124.

    Article  CAS  PubMed  Google Scholar 

  80. Cheng, X. J.; Zhang, S. M.; Wang, X. Cluster-nuclei coassembled one-dimensional subnanometer heteronanostructures. Nano Lett. 2021, 21, 9845–9852.

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Liu, J. L.; Shi, W. X.; Ni, B.; Yang, Y.; Li, S. Z.; Zhuang, J.; Wang, X. Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nat. Chem. 2011, 11, 839–845.

    Article  Google Scholar 

  82. Liu, J. L.; Wang, S. B.; Liu, N.; Yang, D. R.; Wang, H. W.; Hu, H. S.; Zhuang, J.; Wang, X. Au-polyoxometalates A-B-A-B type copolymer-analogue sub-1 nm nanowires. Small 2021, 17, 2006260.

    Article  CAS  Google Scholar 

  83. Zhang, S. M.; Liu, N.; Wang, H. W.; Lu, Q. C.; Shi, W. X.; Wang, X. Sub-nanometer nanobelts based on titanium dioxide/zirconium dioxide-polyoxometalate heterostructures. Adv. Mater. 2021, 33, 2100576.

    Article  CAS  Google Scholar 

  84. Liu, J. L.; Liu, N.; Wang, H. W.; Shi, W. X.; Zhuang, J.; Wang, X. Hybrid MoO3-polyoxometallate sub-1 nm nanobelt superstructures. J. Am. Chem. Soc. 2020, 142, 17557–17563.

    Article  CAS  PubMed  Google Scholar 

  85. Liu, Q. D.; Wang, X. Fabricating sub-nanometer materials through cluster assembly. Chem. Sci. 2022, 13, 12280–12289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, Q. D.; Wang, X. Precise assembly of polyoxometalates at single-cluster levels. Angew. Chem., Int. Ed. 2023, 62, e202217764.

    Article  CAS  Google Scholar 

  87. Liu, Q. D.; Zhang, Q. H.; Shi, W. X.; Hu, H. S.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433–440.

    Article  PubMed  Google Scholar 

  88. Zhang, S. M.; Shi, W. X.; Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 2022, 377, 100–104.

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Fang, W. F.; Tang, R. K.; Liu, Z. M. Polymerization and crosslinking of inorganic ionic oligomers for material construction. Acta. Polym. Sin. 2021, 52, 617–633.

    CAS  Google Scholar 

  90. Howard-Fabretto, L.; Andersson, G. G. Metal clusters on semiconductor surfaces and application in catalysis with a focus on Au and Ru. Adv. Mater. 2020, 32, 1904122.

    Article  CAS  Google Scholar 

  91. Lu, Y. Z.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623.

    Article  CAS  PubMed  Google Scholar 

  92. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    Article  CAS  PubMed  Google Scholar 

  93. Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

    Article  CAS  Google Scholar 

  94. Hanikel, N.; Pei, X. K.; Chheda, S.; Lyu, H.; Jeong, W.; Sauer, J.; Gagliardi, L.; Yaghi, O. M. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021, 374, 454–459.

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Mo, Z. W.; Zhou, H. L.; Zhou, D. D.; Lin, R. B.; Liao, P. Q.; He, C. T.; Zhang, W. X.; Chen, X. M.; Zhang, J. P. Mesoporous metal-organic frameworks with exceptionally high working capacities for adsorption heat transformation. Adv. Mater. 2018, 30, 1704350.

    Article  Google Scholar 

  96. Li, Z. J.; Jiang, F. L.; Yu, M. X.; Li, S. C.; Chen, L.; Hong, M. C. Achieving gas pressure-dependent luminescence from an AIEgen-based metal-organic framework. Nat. Commun. 2022, 13, 2142.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Daigle, J. C.; Piche, L.; Claverie, J. P. Preparation of functional polyethylenes by catalytic copolymerization. Maroomeleuules 2011, 44, 1760–1762.

    ADS  CAS  Google Scholar 

  98. Kubo, M.; Kato, N.; Uno, T.; Itoh, T. Preparation of mechanically cross-linked polystyrenes. Macromolecules 2004, 37, 2762–2765.

    Article  ADS  CAS  Google Scholar 

  99. Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841–1846.

    Article  CAS  Google Scholar 

  100. Da Róz, A. L.; Curvelo, A. A. S.; Gandini, A. Preparation and characterization of cross-linked starch polyurethanes. Carbohydr. Polym. 2009, 77, 526–529.

    Article  Google Scholar 

  101. Tang, B. H.; Li, W. L.; Chang, Y. C.; Yuan, B.; Wu, Y. K.; Zhang, M. T.; Xu, J. F.; Li, J.; Zhang, X. A supramolecular radical dimer: High-efficiency NIR-II photothermal conversion and therapy. Angew. Chem., Int. Ed. 2019, 58, 15526–15531.

    Article  CAS  Google Scholar 

  102. Yang, J. P.; Wang, H.; Yin, Z. H.; Zhang, S.; Xu, J. F.; Zhang, X. Emulsion interfacial polymerization of anticancer peptides: Fabricating polypeptide nanospheres with high drug-loading efficiency and enhanced anticancer activity. Sci. China Chem. 2022, 65, 2252–2259.

    Article  CAS  Google Scholar 

  103. Yang, C. Y.; Shen, P. C.; Ou, Q.; Peng, Q.; Zhou, S. Y.; Li, J. S.; Liu, Z. R.; Zhao, Z. J.; Qin, A. J.; Shuai, Z. G. et al. Complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule. Matter 2022, 5, 1224–1234.

    Article  CAS  Google Scholar 

  104. Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M. One-pot synthesis of dendritic poly(amide-urea)s via Curtius rearrangement. 2.Synthesis and characterization of dendritic poly(amide-urea)s. Macromolecules 2002, 35, 6232–6238.

    Article  ADS  CAS  Google Scholar 

  105. Liu, Z. M.; Shao, C. Y.; Jin, B.; Zhang, Z. S.; Zhao, Y. Q.; Xu, X. R.; Tang, R. K. Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature 2019, 574, 394–398.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Xiao, S. J.; Edwards, S. A.; Gräter, F. A new transferable forcefield for simulating the mechanics of CaCO3 crystals. J. Phys. Chem. C 2011, 115, 20067–20075.

    Article  CAS  Google Scholar 

  107. Yu, Y. D.; Mu, Z.; Jin, B.; Liu, Z. M.; Tang, R. K. Organic–inorganic copolymerization for a homogenous composite without an interphase boundary. Angew. Chem., Int. Ed. 2020, 59, 2071–2075.

    Article  CAS  Google Scholar 

  108. Yu, Y. D.; He, Y.; Mu, Z.; Zhao, Y. Q.; Kong, K. R.; Liu, Z. M.; Tang, R. K. Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness. Adv. Funct. Mater. 2020, 30, 1908556.

    Article  CAS  Google Scholar 

  109. Zhang, S. H.; Nahi, O.; Chen, L.; Aslam, Z.; Kapur, N.; Kim, Y. Y.; Meldrum, F. C. Magnesium ions direct the solid-state transformation of amorphous calcium carbonate thin films to aragonite, magnesium-calcite, or dolomite. Adv. Funct. Mater. 2022, 32, 2201394.

    Article  CAS  Google Scholar 

  110. Zou, Z. Y.; Xie, J. J.; Macías-Sánchez, E.; Fu, Z. Y. Nonclassical crystallization of amorphous calcium carbonate in the presence of phosphate ions. Cryst. Growth Des. 2021, 21, 414–423.

    Article  CAS  Google Scholar 

  111. Bushuev, Y. G.; Finney, A. R.; Rodger, P. M. Stability and structure of hydrated amorphous calcium carbonate. Cryst. Growth Des. 2015, 15, 5269–5279.

    Article  CAS  Google Scholar 

  112. Lu, B. Q.; Garcia, N. A.; Chevrier, D. M.; Zhang, P.; Raiteri, P.; Gale, J. D.; Gebauer, D. Short-range structure of amorphous calcium hydrogen phosphate. Cryst. Growth Des. 2019, 19, 3030–3038.

    Article  CAS  Google Scholar 

  113. Ihli, J.; Kim, Y. Y.; Noel, E. H.; Meldrum, F. C. The effect of additives on amorphous calcium carbonate (ACC): Janus behavior in solution and the solid state. Adv. Funct. Mater. 2013, 23, 1575–1585.

    Article  CAS  Google Scholar 

  114. Wolf, S. E.; Leiterer, J.; Pipich, V.; Barrea, R.; Emmerling, F.; Tremel, W. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: Gaining insight into the mechanism of “polymer-induced liquid precursor” processes. J. Am. Chem. Soc. 2011, 133, 12642–12649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hong, M. N.; Moreland, K. T.; Chen, J. J.; Teng, H. H.; Thalmann, R.; De Yoreo, J. J. Effect of otoconial proteins fetuin A, osteopontin, and otoconin 90 on the nucleation and growth of calcite. Cryst. Growth Des. 2015, 15, 129–136.

    Article  CAS  PubMed  Google Scholar 

  116. Jiang, S. Q.; Chen, Y.; Pan, H. H.; Zhang, Y. J.; Tang, R. K. Faster nucleation at lower pH: Amorphous phase mediated nucleation kinetics. Phys. Chem. Chem. Phys. 2013, 15, 12530–12533.

    Article  CAS  PubMed  Google Scholar 

  117. Jiang, S. Q.; Pan, H. H.; Chen, Y.; Xu, X. R.; Tang, R. K. Amorphous calcium phosphate phase-mediated crystal nucleation kinetics and pathway. Faraday Discuss. 2015, 179, 451–461.

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Ding, H. C.; Pan, H. H.; Xu, X. R.; Tang, R. K. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst. Growth Des. 2014, 14, 763–769.

    Article  CAS  Google Scholar 

  119. Yang, H.; Chai, S. Q.; Zhang, Y. Z.; Ma, Y. R. A study on the influence of sodium carbonate concentration on the synthesis of high Mg calcites. CrystEngComm 2016, 18, 157–163.

    Article  ADS  CAS  Google Scholar 

  120. Zhang, S. H.; Nahi, O.; He, X. F.; Chen, L.; Aslam, Z.; Kapur, N.; Kim, Y. Y.; Meldrum, F. C. Local heating transforms amorphous calcium carbonate to single crystals with defined morphologies. Adv. Funct. Mater. 2022, 32, 2207019.

    Article  CAS  Google Scholar 

  121. Liu, Z. M.; Zhang, Z. S.; Wang, Z. M.; Jin, B.; Li, D. S.; Tao, J. H.; Tang, R. K.; De Yoreo, J. J. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl. Acad. Sci. USA 2020, 117, 3397–3404.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mu, Z.; Kong, K. R.; Jiang, K.; Dong, H. L.; Xu, X. R.; Liu, Z. M.; Tang, R. K. Pressure-driven fusion of amorphous particles into integrated monoliths. Science 2021, 372, 1466–1470.

    Article  ADS  CAS  Google Scholar 

  123. Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; Jäger, C.; Cölfen, H. Amorphous layer around aragonite platelets in nacre. Proc. Natl. Acad. Sci. USA 2005, 102, 12653–12655.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jin, B.; Shao, C. Y.; Wang, Y. M.; Mu, Z.; Liu, Z. M.; Tang, R. K. Anisotropic epitaxial behavior in the amorphous phase-mediated hydroxyapatite crystallization process: A new understanding of orientation control. J. Phys. Chem. Lett. 2019, 10, 7611–7616.

    Article  CAS  PubMed  Google Scholar 

  125. Schmitt, V. E. M.; Kaltschmitt, M. Effect of straw proportion and Ca- and Al-containing additives on ash composition and sintering of wood-straw pellets. Fuel 2013, 109, 551–558.

    Article  CAS  Google Scholar 

  126. Mu, Z.; Tang, R. K.; Liu, Z. M. Construction of inorganic bulks through coalescence of particle precursors. Nanomaterials 2021, 11, 241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, C. W.; Ping, W. W.; Bai, Q.; Cui, H. C.; Hensleigh, R.; Wang, R. L.; Brozena, A. H.; Xu, Z. P.; Dai, J. Q.; Pei, Y. et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 2020, 368, 521–526.

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Bouville, F.; Studart, A. R. Geologically-inspired strong bulk ceramics made with water at room temperature. Nat. Commun. 2017, 8, 14655.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  129. Wang, Y. Y.; Lin, K. L.; Wu, C. T.; Liu, X. G.; Chang, J. Preparation of hierarchical enamel-like structures from nano- to macro-scale, regulated by inorganic templates derived from enamel. J. Mater. Chem. B 2015, 3, 65–71.

    Article  CAS  PubMed  Google Scholar 

  130. Mukherjee, K.; Ruan, Q. C.; Nutt, S.; Tao, J. H.; De Yoreo, J. J.; Moradian-Oldak, J. Peptide-based bioinspired approach to regrowing multilayered aprismatic enamel. ACS Omega 2018, 3, 2546–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ruan, Q. C.; Siddiqah, N.; Li, X. C.; Nutt, S.; Moradian-Oldak, J. Amelogenin-chitosan matrix for human enamel regrowth: Effects of viscosity and supersaturation degree. Connect. Tissue Res. 2014, 55, 150–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, L.; Mao, C. Y.; Wang, J. M.; Xu, X. R.; Pan, H. H.; Deng, Y.; Gu, X. H.; Tang, R. K. Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: An approach to biomaterials with optimal characteristics. Adv. Mater. 2011, 23, 4695–4701.

    Article  CAS  PubMed  Google Scholar 

  133. Shao, C. Y.; Jin, B.; Mu, Z.; Lu, H.; Zhao, Y. Q.; Wu, Z. F.; Yan, L. M.; Zhang, Z. S.; Zhou, Y. C.; Pan, H. H. et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Sci. Adv. 2019, 5, eaaw9569.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, C. H.; Mutalik, C.; Yougbaré, S.; Teng, N. C.; Kuo, T. R. Calcium phosphate nanoclusters for the repair of tooth enamel erosion. Nanomaterials 2022, 12, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Khvostenko, D.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent. Mater. 2016, 32, 73–81.

    Article  CAS  PubMed  Google Scholar 

  136. Yang, T.; Li, Y. S.; Hong, Y. B.; Chi, L.; Liu, C. Z.; Lan, Y.; Wang, Q. M.; Yu, Y. J.; Xu, Q. B.; Teng, W. The construction of biomimetic cementum through a combination of bioskiving and fluorine-containing biomineralization. Front. Bioeng. Biotechnol. 2020, 8, 341.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sun, J.; Chen, C. Q.; Pan, H. H.; Chen, Y.; Mao, C. Y.; Wang, W.; Tang, R. K.; Gu, X. H. Biomimetic promotion of dentin remineralization using L-glutamic acid: Inspiration from biomineralization proteins. J. Mater. Chem. B 2014, 2, 4544–4553.

    Article  CAS  PubMed  Google Scholar 

  138. Saeki, K.; Chien, Y. C.; Nonomura, G.; Chin, A. F.; Habelitz, S.; Gower, L. B.; Marshall, S. J.; Marshall, G. W. Recovery after PILP remineralization of dentin lesions created with two cariogenic acids. Arch. Oral Biol. 2017, 82, 194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, C. Q.; Mao, C. Y.; Sun, J.; Chen, Y.; Wang, W.; Pan, H. H.; Tang, R. K.; Gu, X. H. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen. Mater. Sci. Eng. C 2016, 67, 657–665.

    Article  CAS  Google Scholar 

  140. Spencer, P.; Ye, Q.; Park, J.; Topp, E. M.; Misra, A.; Marangos, O.; Wang, Y.; Bohaty, B. S.; Singh, V.; Sene, F. et al. Adhesive/dentin interface: The weak link in the composite restoration. Ann. Biomed. Eng. 2010, 38, 1989–2003.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yan, L. M.; Zheng, C.; Yuan, D.; Guo, Z. X.; Cui, Y. H.; Xie, Z. J.; Chen, Z.; Tang, R. K.; Liu, Z. M. Fast construction of biomimetic organic-inorganic interface by crosslinking of calcium phosphate oligomers: A strategy for instant regeneration of hard tissue. Adv. Healthcare Mater. 2022, 11, 2201161.

    Article  CAS  Google Scholar 

  142. Kim, H.; Choi, A.; Gong, M. K.; Park, H. R.; Kim, Y. I. Effect of remineralized collagen on dentin bond strength through calcium phosphate ion clusters or metastable calcium phosphate solution. Nanomaterials 2020, 10, 2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liang, K. Y.; Zhao, C. C.; Song, C. X.; Zhao, L.; Qiu, P. C.; Wang, S. Y.; Zhu, J. J.; Gong, Z.; Liu, Z. M.; Tang, R. K. et al. In situ biomimetic mineralization of bone-like hydroxyapatite in hydrogel for the acceleration of bone regeneration. ACS Appl. Mater. Interfaces 2023, 15, 292–308.

    Article  ADS  CAS  PubMed  Google Scholar 

  144. Yao, S.; Xie, Z. A.; Ye, L.; Jin, B.; Xu, Y.; Wang, M.; Yu, C.; Tang, R.; Fang, X.; Fan, S. Ultrasmall sized calcium phosphate nanoclusters based organic-inorganic biofiber for accelerated bone fracture healing. Mater. Today Nano 2023, 21, 100290.

    Article  CAS  Google Scholar 

  145. Yu, Y. D.; Liu, Z. M.; Zhao, Q. Inorganic ionic oligomers induced organic–inorganic synergistic toughening enabling mechanical robust and recyclable nanocomposite hydrogels. Adv. Funct. Mater. 2023, 33, 2213699.

    Article  CAS  Google Scholar 

  146. Yu, Y. D.; Kong, K. R.; Tang, R. K.; Liu, Z. M. A bioinspired ultratough composite produced by integration of inorganic ionic oligomers within polymer networks. ACS Nano 2022, 16, 7926–7936.

    Article  CAS  PubMed  Google Scholar 

  147. He, Y.; Kong, K. R.; Guo, Z. X.; Fang, W. F.; Ma, Z. Q.; Pan, H. H.; Tang, R. K.; Liu, Z. M. A highly sensitive, reversible, and bidirectional humidity actuator by calcium carbonate ionic oligomers incorporated poly(vinylidene fluoride). Adv. Funct. Mater. 2021, 31, 2101291.

    Article  CAS  Google Scholar 

  148. Yu, Y. D.; Kong, K. R.; Mu, Z.; Liu, Z. M.; Tang, R. K. Chameleon-inspired stress-responsive multicolored ultratough films. ACS Appl. Mater. Interfaces 2020, 12, 36731–36739.

    Article  CAS  PubMed  Google Scholar 

  149. Xi, P. Y.; Quan, F. Y.; Yao, J. Y.; Xia, Y. Z.; Fang, K. J.; Jiang, Y. J. Strategy to fabricate a strong and supertough bio-Inspired fiber with organic-inorganic networks in a green and scalable Way. ACS Nano 2021, 15, 16478–16487.

    Article  CAS  PubMed  Google Scholar 

  150. Xi, P. Y.; Luo, J.; Chen, W. C.; Jiang, Y. J. Tough and strong waterborne polyurethane network combined with sub-nanoscaled calcium phosphate oligomers for protective coating. Macromol. Mater. Eng. 2022, 307, 2200181.

    Article  CAS  Google Scholar 

  151. Zhou, Y.; Zeng, G. D.; Zhang, F. D.; Luo, J.; Li, X. N.; Li, J. Z.; Fang, Z. Toward utilization of agricultural wastes: Development of a novel keratin reinforced soybean meal-based adhesive. ACS Sustain. Chem. Eng. 2021, 9, 7630–7637.

    Article  CAS  Google Scholar 

  152. Li, Q.; Hu, Y. L.; Zhang, B. J. Hydrophilic ZnO nanoparticle-based antimicrobial coatings for sandstone heritage conservation. ACS Appl. Nano Mater. 2021, 4, 13908–13918.

    Article  CAS  Google Scholar 

  153. Dong, H.; Deng, M. X.; Sun, D.; Zhao, Y. T.; Liu, H.; Xie, M.; Dong, W. J.; Huang, F. Q. Amorphous lithium-phosphate-encapsulated Fe2O3 as a high-rate and long-life anode for lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 3463–3470.

    Article  CAS  Google Scholar 

  154. Ye, B.; Cai, M. Z.; Xie, M.; Dong, H.; Dong, W. J.; Huang, F. Q. Constructing robust cathode/electrolyte interphase for ultrastable 4.6 V LiCoO2 under ö−25 °C. ACS Appl. Mater. Interfaces 2022, 14, 19561–19568.

    Article  CAS  PubMed  Google Scholar 

  155. Dong, W. J.; Ye, B.; Cai, M. Z.; Bai, Y. Z.; Xie, M.; Sun, X. Z.; Lv, Z. R.; Huang, F. Q. Superwettable high-voltage LiCoO2 for low-temperature lithium ion batteries. ACS Energy Lett. 2023, 8, 881–888.

    Article  ADS  CAS  Google Scholar 

  156. Ballesteros-Soberanas, J.; Hernández-Garrido, J. C.; Cerón-Carrasco, J. P.; Leyva-Pérez, A. Selective semi-hydrogenation of internal alkynes catalyzed by Pd-CaCO3 clusters. J. Catal. 2022, 408, 43–55.

    Article  CAS  Google Scholar 

  157. Sun, D.; Bi, Q. Y.; Deng, M. X.; Jia, B. Q.; Huang, F. Q. Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. Chem. Commun. 2021, 57, 5670–5673.

    Article  CAS  Google Scholar 

  158. Jia, Z. Z.; Shen, Y. J.; Yan, T. T.; Li, H. R.; Deng, J.; Fang, J. H.; Zhang, D. S. Efficient NOx abatement over alkali-resistant catalysts via constructing durable dimeric VOx species. Environ. Sci. Technol. 2022, 56, 2647–2655.

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Hou, Z. D.; Ling, C. C.; Xue, X.; Ma, C.; Fu, J. W.; Xue, Q. Z. Surface lattice reconstruction enhanced the photoresponse performance of a self-powered ZnO nanorod arrays/Si heterojunction photodetector. J. Mater. Chem. C 2020, 8, 17440–17449.

    Article  CAS  Google Scholar 

  160. Lin, X. Q.; Chen, J.; Xu, S. X.; Mao, T. Y.; Liu, W. P.; Wu, J. Z.; Li, X. D.; Yan, J. H. Solidification of heavy metals and PCDD/Fs from municipal solid waste incineration fly ash by the polymerization of calcium carbonate oligomers. Chemosphere 2022, 288, 132420.

    Article  CAS  PubMed  Google Scholar 

  161. Chen, J.; Li, M. J.; Mao, T. Y.; Fu, C. K.; Lin, X. Q.; Li, X. D.; Yan, J. H. Effects of curing pathways and thermal-treatment temperatures on the solidification of heavy metal in fly ash by CaCO3 oligomers polymerization. J. Cleaner Prod. 2022, 362, 132526.

    Article  CAS  Google Scholar 

  162. Chen, J.; Zhu, W. C.; Shen, Y. Z.; Fu, C. K.; Li, M. J.; Lin, X. Q.; Li, X. D.; Yan, J. H. A novel method of calcium dissolution-crystallization-polymerization for stabilization/solidification of MSWI fly ash. Chemosphere 2023, 326, 138465.

    Article  CAS  PubMed  Google Scholar 

  163. Yu, Y. D.; Guo, Z. X.; Zhao, Y. Q.; Kong, K. R.; Pan, H. H.; Xu, X. R.; Tang, R. K.; Liu, Z. M. A flexible and degradable hybrid mineral as a plastic substitute. Adv. Mater. 2022, 34, 2107523.

    Article  CAS  Google Scholar 

  164. Fanin, N.; Kardol, P.; Farrell, M.; Kempel, A.; Ciobanu, M.; Nilsson, M. C.; Gundale, M. J.; Wardle, D. A. Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems. Ecol. Lett. 2019, 22, 1095–1103.

    Article  PubMed  Google Scholar 

  165. Gao, L. L.; Wei, C. Q.; Xu, H.; Liu, X. Y.; Siemann, E.; Lu, X. M. Latitudinal variation in the diversity and composition of various organisms associated with an exotic plant: The role of climate and plant invasion. New Phytol. 2021, 231, 1559–1569.

    Article  PubMed  Google Scholar 

  166. Fang, W. F.; Mu, Z.; He, Y.; Kong, K. R.; Jiang, K.; Tang, R. K.; Liu, Z. M. Organic-inorganic covalent-ionic molecules for elastic ceramic plastic. Nature 2023, 619, 293–299.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding supports from the National Natural Science Foundation of China (Nos. 22022511 and 22275161), the National Key Research and Development Program of China (No. 2020YFA0710400), and the Fundamental Research Funds for the Central Universities (Nos. 2021FZZX001-04 and 2022ZJJH02-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Y., Qin, K., Tang, R. et al. Inorganic ionic polymerization: From biomineralization to materials manufacturing. Nano Res. 17, 550–569 (2024). https://doi.org/10.1007/s12274-023-6033-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6033-z

Keywords

Navigation