Skip to main content
Log in

Fluorophosphates and fluorosulfates cathode materials: Progress towards high energy density sodium-ion battery

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid diffusion of renewable energy boosts the wide deployment of large-scale energy storage system. With the low cost and high crustal abundance, sodium-ion battery (SIB) technology is expected to become a dominant technology in that area in the future. Toward the practical application, novel cathode materials are urged to develop that show high energy density without sacrificing their cost and benignity to the environment. While the years of many studies, this still remains a huge challenge to battery scientists. In this review, we discuss recent breakthroughs in SIB cathode materials with high energy density, namely fluorphosphates and fluorosulfates. The design of materials, the crystal structure, the electrochemical performance, and the underlaying intercalation mechanism are systematically reviewed. Useful strategies and research directions are also provided to advance future high-energy, low-cost, and ecofriendly cathode materials for next generation SIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, B. B.; Gao, X. F.; Li, J. Y.; Yuan, C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 2014, 48, 3047–3055.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2008, 89, 292–308.

    Article  Google Scholar 

  4. Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

    Article  CAS  Google Scholar 

  5. Tarascon, J. M. Is lithium the new gold. Nat. Chem. 2010, 2, 510–510.

    Article  CAS  PubMed  Google Scholar 

  6. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2003, 6, 2338–2360.

    Article  Google Scholar 

  7. Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. H. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater. 2008, 8, 1702869.

    Article  Google Scholar 

  8. Ren, M.; Fang, H. Y.; Wang, C. C.; Li, H. X.; Li, F. J. Advances on manganese-oxide-based cathodes for Na-ion batteries. Energy Fuels 2020, 34, 13412–13426.

    Article  CAS  Google Scholar 

  9. Goikolea, E.; Palomares, V.; Wang, S. J.; de Larramendi, I. R.; Guo, X.; Wang, G. X.; Rojo, T. Na-ion batteries-approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055.

    Article  CAS  Google Scholar 

  10. Zhang, L. P.; Wang, W.; Lu, S. F.; Xiang, Y. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 2020, 11, 2003640.

    Article  Google Scholar 

  11. Hu, Y. S.; Li, Y. Q. Unlocking sustainable Na-ion batteries into industry. ACS Energy Lett. 2020, 6, 4115–4117.

    Article  Google Scholar 

  12. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.

    Article  CAS  Google Scholar 

  13. Hou, J. R.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M. X.; Kan, W. H.; Avdeev, M.; Zhong, G. M.; Liao, Y. K.; Lai, Y. H. et al. Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Storage Mater. 2020, 42, 307–316.

    Article  Google Scholar 

  14. Hadouchi, M.; Yaqoob, N.; Kaghazchi, P.; Tang, M. X.; Liu, J.; Sang, P. F.; Fu, Y. Z.; Huang, Y. H.; Ma, J. W. Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: A novel sodium-deficient NASICON cathode for sodium-ion batteries. Energy Storage Mater. 2020, 35, 192–202.

    Article  Google Scholar 

  15. Yan, G. C.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J. M. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat. Commun. 2009, 10, 585.

    Article  ADS  Google Scholar 

  16. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2008, 3, 18013.

    Article  ADS  Google Scholar 

  17. Li, W. J.; Han, C.; Wang, W. L.; Gebert, F.; Chou, S. L.; Liu, H. K.; Zhang, X. H.; Dou, S. X. Commercial prospects of existing cathode materials for sodium ion storage. Adv. Energy Mater. 2017, 7, 1700274.

    Article  Google Scholar 

  18. Li, H. X.; Xu, M.; Zhang, Z. A.; Lai, Y. Q.; Ma, J. M. Engineering of polyanion type cathode materials for sodium-ion batteries: Toward higher energy/power density. Adv. Funct. Mater. 2020, 30, 2000473.

    Article  CAS  Google Scholar 

  19. Barpanda, P.; Nishimura, S. I.; Yamada, A. High-voltage pyrophosphate cathodes. Adv. Energy Mater. 2002, 2, 841–859.

    Article  Google Scholar 

  20. Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 2007, 4, 1600275.

    Article  Google Scholar 

  21. Li, H. X.; Jin, T.; Chen, X. B.; Lai, Y. Q.; Zhang, Z. A.; Bao, W. Z.; Jiao, L. F. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv. Energy Mater. 2008, 8, 1801418.

    Article  Google Scholar 

  22. Manthiram, A.; Goodenough, J. B. Lithium-based polyanion oxide cathodes. Nat. Energy 2020, 6, 844–845.

    Article  ADS  Google Scholar 

  23. Kim, M.; Kim, D.; Lee, W.; Jang, H. M.; Kang, B. New class of 3.7 V Fe-based positive electrode materials for Na-ion battery based on cation-disordered polyanion framework. Chem. Mater. 2008, 30, 6346–6352.

    Article  Google Scholar 

  24. Law, M.; Balaya, P. NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery. Energy Storage Mater. 2008, 10, 102–113.

    Article  Google Scholar 

  25. Barpanda, P.; Ati, M.; Melot, B. C.; Rousse, G.; Chotard, J. N.; Doublet, M. L.; Sougrati, M. T.; Corr, S. A.; Jumas, J. C.; Tarascon, J. M. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater. 2011, 10, 772–779.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Barpanda, P.; Oyama, G.; Nishimura, S. I.; Chung, S. C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2004, 5, 4358.

    Article  ADS  Google Scholar 

  27. Recham, N.; Chotard, J. N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J. M. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat. Mater. 2010, 9, 68–74.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Wang, J. J.; Kang, J. Z.; Gu, Z. Y.; Liang, Q. H.; Zhao, X. Y.; Wang, X. M.; Guo, R. S.; Yu, H.; Du, C. F.; Wu, X. L. Localized electron density redistribution in fluorophosphate cathode: Dangling anion regulation and enhanced Na-ion diffusivity for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2109694.

    Article  CAS  Google Scholar 

  29. Morais, W. G.; Leite, M. M.; Torresi, R. M. Titanium- and niobiumdoped fluorophosphates as positive electrodes for sodium-ion batteries. J. Electroanal. Chem. 2020, 897, 115595.

    Article  Google Scholar 

  30. Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; Zhao, X. X.; Wang, X. T.; Liang, H. J.; Zhao, B.; Li, W. H.; Pan, X. M.; Wu, X. L. Aliovalent-ion-induced lattice regulation based on charge balance theory: Advanced fluorophosphate cathode for sodium-ion full batteries. Small 2020, 17, 2102010.

    Article  Google Scholar 

  31. Chang, W.; Zhang, X. Y.; Qu, J.; Chen, Z.; Zhang, Y. J.; Sui, Y.; Ma, X. F.; Yu, Z. Z. Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces 2020, 12, 41419–41428.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, L. M.; Zhang, D. T.; Wang, X. Y.; Guo, G. S. Continuous-flow rapid and controllable microfluidic synthesis of sodium vanadium fluorophosphate as a cathode material. Appl. Mater. Today 2021, 23, 101032.

    Article  Google Scholar 

  33. Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749–753.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Ellis, B. L.; Michael Makahnouk, W. R.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem. Mater. 2010, 22, 1059–1070.

    Article  CAS  Google Scholar 

  35. Kabalov, Y. K.; Simonov, M. A.; Belov, N. V. Crystalline structure of basic iron ortho-phosphate, Na2FePO4(OH). Dokl. Akad. Nauk SSSR 1974, 215, 850–853.

    CAS  Google Scholar 

  36. Sanz, F.; Parada, C.; Ruíz-Valero, C. Crystal growth, crystal structure and magnetic properties of disodium cobalt fluorophosphate. J. Mater. Chem. 2001, 11, 208–211.

    Article  CAS  Google Scholar 

  37. Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem. Commun. 2011, 13, 1225–1228.

    Article  CAS  Google Scholar 

  38. Ling, R.; Cai, S.; Shen, S. B.; Hu, X. D.; Xie, D. L.; Zhang, F. Y.; Sun, X. H.; Yu, N.; Wang, F. W. Synthesis of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries. J. Alloys Compd. 2017, 704, 631–640.

    Article  CAS  Google Scholar 

  39. Deng, X.; Shi, W. X.; Sunarso, J.; Liu, M. L.; Shao, Z. P. A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life. ACS Appl. Mater. Interfaces 2017, 9, 16280–16287.

    Article  CAS  PubMed  Google Scholar 

  40. Ko, W.; Yoo, J. K.; Park, H.; Lee, Y.; Kim, H.; Oh, Y.; Myung, S. T.; Kim, J. Development of Na2FePO4F/conducting-polymer composite as an exceptionally high performance cathode material for Na-ion batteries. J. Power Sources 2019, 432, 1–7.

    Article  CAS  ADS  Google Scholar 

  41. Wang, F. F.; Zhang, N.; Zhao, X. D.; Wang, L. X.; Zhang, J.; Wang, T. S.; Liu, F. F.; Liu, Y. C.; Fan, L. Z. Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics. Adv. Sci. 2019, 6, 1900649.

    Article  Google Scholar 

  42. Langrock, A.; Xu, Y. H.; Liu, Y. H.; Ehrman, S.; Manivannan, A.; Wang, C. S. Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J. Power Sources 2013, 223, 62–67.

    Article  CAS  Google Scholar 

  43. Yan, J. H.; Liu, X. B.; Li, B. Y. Nano-assembled Na2FePO4F/carbon nanotube multi-layered cathodes for Na-ion batteries. Electrochem. Commun. 2015, 56, 46–50.

    Article  CAS  Google Scholar 

  44. Smiley, D. L.; Goward, G. R. Ex situ23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling. Chem. Mater. 2016, 28, 7654–7656.

    Article  Google Scholar 

  45. Li, Q.; Liu, Z. G.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G. M.; Hou, X.; Fu, R. Q.; Chen, Z. H. et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F Cathode. Angew. Chem. 2018, 130, 12094–12099.

    Article  ADS  Google Scholar 

  46. Yakubovich, O. V.; Karimova, O. V.; Mel’nikov, O. K. The mixed anionic framework in the structure of Na2F[PO4]. Acta Cryst. 1997, 53, 395–397.

    Google Scholar 

  47. Recham, N.; Chotard, J. N.; Dupont, L.; Djellab, K.; Armand, M.; Tarascon, J. M. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 2009, 156, A993.

    Article  CAS  Google Scholar 

  48. Zhong, Y. J.; Wu, Z. G.; Tang, Y.; Xiang, W.; Guo, X. D.; Zhong, B. H. Micro-nano structure Na2MnPO4F/C as cathode material with excellent sodium storage properties. Mater. Lett. 2015, 145, 269–272.

    Article  CAS  Google Scholar 

  49. Wu, L.; Hu, Y.; Zhang, X. P.; Liu, J. Q.; Zhu, X.; Zhong, S. K. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J. Power Sources 2018, 374, 40–47.

    Article  CAS  ADS  Google Scholar 

  50. Hu, Y.; Wu, L.; Liao, G. X.; Yang, Y.; Ye, F.; Chen, J. B.; Zhu, X.; Zhong, S. K. Electrospinning synthesis of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries. Ceram. Int. 2018, 44, 17577–17584.

    Article  CAS  Google Scholar 

  51. Ling, R.; Cai, S.; Shen, K. E.; Sang, Z. Y.; Xie, D. L.; Sun, J. Y.; Xiong, K. Z.; Guo, J. Z.; Sun, X. H. Dual carbon-confined Na2MnPO4F nanoparticles as a superior cathode for rechargeable sodium-ion battery. Ceram. Int. 2019, 45, 19799–19807.

    Article  CAS  Google Scholar 

  52. Kubota, K.; Yokoh, K.; Yabuuchi, N.; Komaba, S. Na2CoPO4F as a high-voltage electrode material for Na-ion batteries. Electrochemistry 2014, 82, 909–911.

    Article  CAS  Google Scholar 

  53. Zou, H.; Li, S.; Wu, X.; McDonald, M. J.; Yang, Y. Spray-drying synthesis of pure Na2CoPO4F as cathode material for sodium ion batteries. ECS Electrochem. Lett. 2015, 4, A53–A55.

    Article  CAS  Google Scholar 

  54. Barker, J.; Saidi, M. Y.; Swoyer, J. L. A sodium-ion cell based on the fluorophosphate compound NaVPO4 F. Electrochem. Solid-State Lett. 2003, 6, A1.

  55. Barker, J.; Saidi, M. Y.; Swoyer, J. L. A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 2004, 151, A1670.

    Article  CAS  Google Scholar 

  56. Zhuo, H. T.; Wang, X. Y.; Tang, A. P.; Liu, Z. M.; Gamboa, S.; Sebastian, P. J. The preparation of NaV1−xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 2006, 160, 698–703.

    Article  CAS  ADS  Google Scholar 

  57. Liu, Z. M.; WANG, X. Y.; Wang, Y.; Tang, A. P.; Yang, S. Y.; He, L. F. Preparation of NaV1−xAlxPO4F cathode materials for application of sodium-ion battery. Trans. Nonferrous Met. Soc. China 2008, 18, 346–350.

    Article  Google Scholar 

  58. Zhao, J. Q.; He, J. P.; Ding, X. C.; Zhou, J. H.; Ma, Y.; Wu, S. C.; Huang, R. M. A novel sol-gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 2010, 195, 6854–6859.

    Article  CAS  ADS  Google Scholar 

  59. Lu, Y.; Zhang, S.; Li, Y.; Xue, L. G.; Xu, G. J.; Zhang, X. W. Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J. Power Sources 2014, 247, 770–777.

    Article  CAS  ADS  Google Scholar 

  60. Ruan, Y. L.; Wang, K.; Song, S. D.; Han, X.; Cheng, B. W. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries. Electrochim. Acta 2015, 160, 330–336.

    Article  CAS  Google Scholar 

  61. Xu, M. W.; Cheng, C. J.; Sun, Q. Q.; Bao, S. J.; Niu, Y. B.; He, H.; Li, Y. T.; Song, J. Correction: A 3D porous interconnected NaVPO4F/C network: Preparation and performance for Na-ion batteries. RSC Adv. 2015, 5, 56686–566686.

    Article  CAS  ADS  Google Scholar 

  62. Jin, T.; Liu, Y. C.; Li, Y.; Cao, K. Z.; Wang, X. J.; Jiao, L. F. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700087.

    Article  Google Scholar 

  63. Chang, C. Y.; Li, Y.; He, W.; Li, G. B.; Guo, W. J.; Zhu, P. H.; Yao, M. M.; Feng, J. J. NaVPO4F prepared under air as a cathode material for sodium-ion batteries. Mater. Lett. 2017, 209, 82–85.

    Article  CAS  Google Scholar 

  64. Feng, P. Y.; Wang, W.; Hou, J.; Wang, K. L.; Cheng, S. J.; Jiang, K. A 3D coral-like structured NaVPO4F/C constructed by a novel synthesis route as high-performance cathode material for sodium-ion battery. Chem. Eng. J. 2018, 353, 25–33.

    Article  CAS  Google Scholar 

  65. Cheng, B.; Zhang, S. J.; Zou, F. X.; Luo, L. L.; Chen, Y. X.; Chen, S. J.; Zhuo, H. T.; Zeng, X. R. Nano-NaVPO4F enwrapped in reduced graphene oxide as a cathode material for long-cycle and high-rate sodium-ion batteries. J. Alloys Compd. 2019, 811, 151828.

    Article  CAS  Google Scholar 

  66. Ge, X. C.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Yan, G. C.; Wu, X. W.; Wang, J. X. Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chem. Eng. J. 2019, 357, 458–462.

    Article  CAS  Google Scholar 

  67. Ling, M. X.; Li, F.; Yi, H. M.; Li, X. F.; Hou, G. J.; Zheng, Q.; Zhang, H. M. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries. J. Mater. Chem. A 2018, 6, 24201–24209.

    Article  CAS  Google Scholar 

  68. Chen, C. C.; Li, T. J.; Tian, H.; Zou, Y. B.; Sun, J. C. Building highly stable and industrial NaVPO4F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries. J. Mater. Chem. A 2019, 7, 18451–18457.

    Article  CAS  Google Scholar 

  69. Le Meins, J. M.; Crosnier-Lopez, M. P.; Hemon-Ribaud, A.; Courbion, G. Phase transitions in the NaM2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 1999, 148, 260–277.

    Article  CAS  ADS  Google Scholar 

  70. Sauvage, F.; Quarez, E.; Tarascon, J. M.; Baudrin, E. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci. 2006, 8, 1215–1221.

    Article  CAS  ADS  Google Scholar 

  71. Massa, W.; Yakubovich, O. V.; Dimitrova, O. V. Crystal structure of a new sodium vanadyl(IV) fluoride phosphate NA3{V2O2F[PO4]2}. Solid State Sci. 2002, 4, 495–501.

    Article  CAS  ADS  Google Scholar 

  72. Gover, R. K. B.; Bryan, A.; Burns, P.; Barker, J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics 2006, 177, 1495–1500.

    Article  CAS  Google Scholar 

  73. Jiang, T.; Chen, G.; Li, A.; Wang, C. Z.; Wei, Y. J. Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys Compd. 2009, 478, 604–607.

    Article  CAS  Google Scholar 

  74. Shakoor, R. A.; Seo, D. H.; Kim, H.; Park, Y. U.; Kim, J.; Kim, S. W.; Gwon, H.; Lee, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2002, 22, 20535–20541.

    Article  Google Scholar 

  75. Tsirlin, A. A.; Nath, R.; Abakumov, A. M.; Furukawa, Y.; Johnston, D. C.; Hemmida, M.; Krug Von Nidda, H. A.; Loidl, A.; Geibel, C.; Rosner, H. Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5. Phys. Rev. B 2011, 84, 014429.

    Article  ADS  Google Scholar 

  76. Serras, P.; Palomares, V.; Goñi, A.; Gil De Muro, I.; Kubiak, P.; Lezama, L.; Rojo, T. High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x. J. Mater. Chem. 2002, 22, 22301–22308.

    Article  Google Scholar 

  77. Serras, P.; Palomares, V.; Alonso, J.; Sharma, N.; López del Amo, J. M.; Kubiak, P.; Fdez-Gubieda, M. L.; Rojo, T. Electrochemical Na extraction/insertion of Na3V2O2x(PO4)2F3−2x. Chem. Mater. 2003, 25, 4917–4925.

    Article  Google Scholar 

  78. Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x (0 ≥ x ≥ 1): Combined first-principles and experimental study. Adv. Funct. Mater. 2004, 24, 4603–4614.

    Article  Google Scholar 

  79. Liu, Z. G.; Hu, Y. Y.; Dunstan, M. T.; Huo, H.; Hao, X. G.; Zou, H.; Zhong, G. M.; Yang, Y.; Grey, C. P. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chem. Mater. 2004, 26, 2513–2521.

    Article  Google Scholar 

  80. Bianchini, M.; Brisset, N.; Fauth, F.; Weill, F.; Elkaim, E.; Suard, E.; Masquelier, C.; Croguennec, L. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study. Chem. Mater. 2004, 26, 4238–4247.

    Article  Google Scholar 

  81. Bianchini, M.; Fauth, F.; Brisset, N.; Weill, F.; Suard, E.; Masquelier, C.; Croguennec, L. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction. Chem. Mater. 2015, 27, 3009–3020.

    Article  CAS  Google Scholar 

  82. Broux, T.; Bamine, T.; Fauth, F.; Simonelli, L.; Olszewski, W.; Marini, C.; Ménétrier, M.; Carlier, D.; Masquelier, C.; Croguennec, L. Strong impact of the oxygen content in Na3V2(PO4)2F3−yOy (0 ≤ y ≤ 2) on its structural and electrochemical properties. Chem. Mater. 2016, 28, 7683–7692.

    Article  CAS  Google Scholar 

  83. Liu, Q.; Meng, X.; Wei, Z. X.; Wang, D. X.; Gao, Y.; Wei, Y. J.; Du, F.; Chen, G. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 31709–31715.

    Article  CAS  PubMed  Google Scholar 

  84. Zhu, C. B.; Wu, C.; Chen, C. C.; Kopold, P.; Van Aken, P. A.; Maier, J.; Yu, Y. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 2017, 29, 5207–5215.

    Article  CAS  Google Scholar 

  85. Broux, T.; Fauth, F.; Hall, N.; Chatillon, Y.; Bianchini, M.; Bamine, T.; Leriche, J. B.; Suard, E.; Carlier, D.; Reynier, Y. et al. High rate performance for carbon-coated Na3V2(PO4)2F3 in Na-ion batteries. Small Methods 2019, 3, 1800215.

    Article  CAS  Google Scholar 

  86. Yi, H. M.; Lin, L.; Ling, M. X.; Lv, Z. Q.; Li, R.; Fu, Q.; Zhang, H. M.; Zheng, Q.; Li, X. F. Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal-ball-milling method. ACS Energy Lett. 2019, 4, 1565–1571.

    Article  CAS  Google Scholar 

  87. Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 2016, 7, 10308.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Mukherjee, A.; Sharabani, T.; Perelshtein, I.; Noked, M. Three-sodium ion activity of a hollow spherical Na3V2(PO4)2F3 cathode: Demonstrating high capacity and stability. Batter. Supercaps 2020, 3, 52–55.

    Article  CAS  Google Scholar 

  89. Fang, R. H.; Olchowka, J.; Pablos, C.; Camacho, P. S.; Carlier, D.; Croguennec, L.; Cassaignon, S. Effect of the particles morphology on the electrochemical performance of Na3V2(PO4)2F3−yOy. Batter. Supercaps 2022, 5, e202100179.

    Article  CAS  Google Scholar 

  90. Essehli, R.; Yahia, H. B.; Amin, R.; Li, M. Y.; Morales, D.; Greenbaum, S. G.; Abouimrane, A.; Parejiya, A.; Mahmoud, A.; Boulahya, K. et al. Sodium rich vanadium oxyfluorophosphate—Na3.2Ni0.2V1.8(PO4)2F2O—as advanced cathode for sodium ion batteries. Adv. Sci., in press, https://doi.org/10.1002/advs.202301091.

  91. Liang, Z. T.; Zhang, X. F.; Liu, R.; Ortiz, G. F.; Zhong, G. M.; Xiang, Y. X.; Chen, S. J.; Mi, J. X.; Wu, S. Q.; Yang, Y. New dimorphs of Na5V(PO4)2F2 as an ultrastable cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 1181–1189.

    Article  CAS  Google Scholar 

  92. Mazumder, M.; Pati, S. K. Theoretical insights into Na5M(PO4)2F2 (M = Cr, V): A fluorophosphate-based high-performance cathode system for sodium-ion batteries. J. Phys. Chem. C 2021, 125, 19593–19599.

    Article  CAS  Google Scholar 

  93. Barpanda, P.; Chotard, J. N.; Recham, N.; Delacourt, C.; Ati, M.; Dupont, L.; Armand, M.; Tarascon, J. M. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg. Chem. 2010, 49, 7401–7413.

    Article  CAS  PubMed  Google Scholar 

  94. Ati, M.; Sougrati, M. T.; Recham, N.; Barpanda, P.; Reynaud, M.; Delacourt, C.; Armand, M.; Jumas, J. C.; Tarascon, J. M. Synthesis of new fluorosulphate materials using different approaches. ECS Trans. 2009, 35, 57–63.

    Article  Google Scholar 

  95. Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew. Chem., Int. Ed. 2010, 49, 8738–8742.

    Article  CAS  Google Scholar 

  96. Ati, M.; Dupont, L.; Recham, N.; Chotard, J. N.; Walker, W. T.; Davoisne, C.; Barpanda, P.; Sarou-Kanian, V.; Armand, M.; Tarascon, J. M. Synthesis, structural, and transport properties of novel bihydrated fluorosulphates NaMSO4F2H2O (M = Fe, Co, and Ni). Chem. Mater. 2010, 22, 4062–4068.

    Article  CAS  Google Scholar 

  97. Reynaud, M.; Barpanda, P.; Rousse, G.; Chotard, J. N.; Melot, B. C.; Recham, N.; Tarascon, J. M. Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn). Solid State Sci. 2012, 14, 15–20.

    Article  CAS  ADS  Google Scholar 

  98. Barpanda, P.; Ati, M.; Recham, N.; Chotard, J. N.; Walker, W.; Armand, M.; Tarascon, J. M. Crystal structure and electrochemical study of A(Fe1−xMx)SO4F (A = Li/Na; M = Co/Ni/Mn) fluorosulfates prepared by low temperature ionothermal synthesis. ECS Trans. 2019, 24, 1–9.

    Google Scholar 

  99. Momida, H.; Kitajou, A.; Okada, S.; Oguchi, T. First-principles study of X-ray absorption spectra in NaFeSo4F for exploring Na-ion battery reactions. J. Phys. Soc. Japan 2019, 88, 124709.

    Article  ADS  Google Scholar 

  100. Recham, N.; Rousse, G.; Sougrati, M. T.; Chotard, J. N.; Frayret, C.; Mariyappan, S.; Melot, B. C.; Jumas, J. C.; Tarascon, J. M. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem. Mater. 2012, 24, 4363–4370.

    Article  CAS  Google Scholar 

  101. Lander, L.; Rousse, G.; Abakumov, A. M.; Sougrati, M.; van Tendeloo, G.; Tarascon, J. M. Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph. J. Mater. Chem. A 2015, 3, 19754–19764.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22179098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Hadouchi or Jiwei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadouchi, M., Hou, J., Koketsu, T. et al. Fluorophosphates and fluorosulfates cathode materials: Progress towards high energy density sodium-ion battery. Nano Res. 17, 1427–1440 (2024). https://doi.org/10.1007/s12274-023-6005-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6005-3

Keywords

Navigation