Skip to main content
Log in

N:ZnO/MoS2-heterostructured flexible synaptic devices enabling optoelectronic co-modulation for robust artificial visual systems

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the merits of non-contact, highly efficient, and parallel computing, optoelectronic synaptic devices combining sensing and memory in a single unit are promising for constructing neuromorphic computing and artificial visual chip. Based on this, a N:ZnO/MoS2-heterostructured flexible optoelectronic synaptic device is developed in this work, and its capability in mimicking the synaptic behaviors is systemically investigated under the electrical and light signals. Versatile synaptic functions, including synaptic plasticity, long-term/short-term memory, and learning-forgetting-relearning property, have been achieved in this synaptic device. Further, an artificial visual memory system integrating sense and memory is emulated with the device array, and the visual memory behavior can be regulated by varying the light parameters. Moreover, the optoelectronic co-modulation behavior is verified by applying mixed electric and light signals to the array. In detail, a transient recovery property is discovered when the electric signals are applied in synergy during the decay of the light response, of which property facilitates the development of robust artificial visual systems. Furthermore, by superimposing electrical signals during the light response process, a differentiated response of the array is achieved, which can be used as a proof of concept for the color perception of the artificial visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Gong, J. D.; Wei, H. H.; Liu, J. Q.; Sun, L.; Xu, Z. P.; Huang, H.; Xu, W. T. An artificial visual nerve for mimicking pupil reflex. Matter 2022, 5, 1578–1589.

    Article  Google Scholar 

  3. Wang, Y.; Gong, Y.; Huang, S. M.; Xing, X. C.; Lv, Z. Y.; Wang, J. J.; Yang, J. Q.; Zhang, G. H.; Zhou, Y.; Han, S. T. Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 2021, 12, 5979.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meng, J. L.; Wang, T. Y.; Zhu, H.; Ji, L.; Bao, W. Z.; Zhou, P.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 2022, 22, 81–89.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Pei, Y. F.; Li, Z. Q.; Li, B.; Zhao, Y.; He, H.; Yan, L.; Li, X. Y.; Wang, J. J.; Zhao, Z.; Sun, Y. et al. A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS-core/shell (SC) nanorod arrays optoelectronic memristor. Adv. Funct. Mater. 2022, 32, 2203454.

    Article  CAS  Google Scholar 

  6. Hung, C. C.; Chiang, Y. C.; Lin, Y. C.; Chiu, Y. C.; Chen, W. C. Conception of a smart artificial retina based on a dual-mode organic sensing inverter. Adv. Sci. 2021, 8, 2100742.

    Article  CAS  Google Scholar 

  7. Seo, S.; Jo, S. H.; Kim, S.; Shim, J.; Oh, S.; Kim, J. H.; Heo, K.; Choi, J. W.; Choi, C.; Oh, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Yang, X. Y.; Xiong, Z. Y.; Chen, Y. J.; Ren, Y.; Zhou, L.; Li, H. L.; Zhou, Y.; Pan, F.; Han, S. T. A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy. 2020, 78, 105246.

    Article  CAS  Google Scholar 

  9. Kwon, S. M.; Cho, S. W.; Kim, M.; Heo, J. S.; Kim, Y.; Park, S. K. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 2019, 31, 1906433.

    Article  CAS  Google Scholar 

  10. Wang, H. L.; Zhao, Q.; Ni, Z. J.; Li, Q. Y.; Liu, H. T.; Yang, Y. C.; Wang, L. F.; Ran, Y.; Guo, Y. L.; Hu, W. P. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961.

    Article  Google Scholar 

  11. Lou, Z.; Shen, G. Z. Flexible image sensors with semiconducting nanowires for biomimic visual applications. Small Struct. 2021, 2, 2000152.

    Article  CAS  Google Scholar 

  12. Feng, G. D.; Jiang, J.; Li, Y. R.; Xie, D. D.; Tian, B. B.; Wan, Q. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Adv. Funct. Mater. 2021, 31, 2104327.

    Article  CAS  Google Scholar 

  13. Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

    Article  Google Scholar 

  14. Yan, X. D.; Qian, J. H.; Sangwan, V. K.; Hersam, M. C. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv. Mater. 2022, 34, 2108025.

    Article  CAS  Google Scholar 

  15. Jia, L. N.; Wu, J. Y.; Zhang, Y. N.; Qu, Y.; Jia, B. H.; Chen, Z. G.; Moss, D. J. Fabrication technologies for the on-chip integration of 2D materials. Small Methods 2022, 6, 2101435.

    Article  Google Scholar 

  16. Lian, C. Y.; Vagionas, C.; Alexoudi, T.; Pleros, N.; Youngblood, N.; Ríos, C. Photonic (computational) memories: Tunable nanophotonics for data storage and computing. Nanophotonics 2022, 11, 3823–3854.

    Article  CAS  Google Scholar 

  17. Chao, Y. H.; Chen, J. C.; Yang, D. L.; Tseng, Y. J.; Hsu, C. H.; Chen, J. Y. High-performance non-volatile flash photomemory via highly oriented quasi-2D perovskite. Adv. Funct. Mater. 2022, 32, 2112521.

    Article  CAS  Google Scholar 

  18. Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiNxO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 31, 2101201.

    Article  CAS  Google Scholar 

  19. Shi, J. L.; Jie, J. S.; Deng, W.; Luo, G.; Fang, X. C.; Xiao, Y. L.; Zhang, Y. J.; Zhang, X. J.; Zhang, X. H. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 2022, 34, 2200380.

    Article  CAS  Google Scholar 

  20. Panca, A.; Panidi, J.; Faber, H.; Stathopoulos, S.; Anthopoulos, T. D.; Prodromakis, T. Flexible oxide thin film transistors, memristors, and their integration. Adv. Funct. Mater. 2023, 33, 2213762.

    Article  CAS  Google Scholar 

  21. Wang, X. Y.; Zong, Y. X.; Liu, D. Y.; Yang, J. H.; Wei, Z. M. Advanced optoelectronic devices for neuromorphic analog based on low-dimensional semiconductors. Adv. Funct. Mater. 2023, 33, 2213894.

    Article  CAS  Google Scholar 

  22. Yang, C.; Sun, B.; Zhou, G. D.; Guo, T.; Ke, C.; Chen, Y. Z.; Shao, J. Y.; Zhao, Y.; Wang, H. Y. Photoelectric Memristor-based machine vision for artificial intelligence applications. ACS Mater. Lett. 2023, 5, 504–526.

    Article  CAS  Google Scholar 

  23. Kuang, J. H.; Liu, K.; Liu, M. H.; Shao, M. C.; Zhu, M. L.; Liu, G. C.; Wen, W.; Chen, J. Y.; Qin, M. C.; Pan, Z. C. et al. Interface defects tuning in polymer-perovskite phototransistors for visual synapse and adaptation functions. Adv. Funct. Mater. 2023, 33, 2209502.

    Article  CAS  Google Scholar 

  24. Hu, Y. X.; Dai, M. J.; Feng, W.; Zhang, X.; Gao, F.; Zhang, S. C.; Tan, B. Y.; Zhang, J.; Shuai, Y.; Fu, Y. Q. et al. Ultralow power optical synapses based on MoS2 layers by indium-induced surface charge doping for biomimetic eyes. Adv. Mater. 2021, 33, 2104960.

    Article  CAS  Google Scholar 

  25. Liu, Q.; Gao, S.; Xu, L.; Yue, W. J.; Zhang, C. W.; Kan, H.; Li, Y.; Shen, G. Z. Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 2022, 51, 3341–3379.

    Article  CAS  PubMed  Google Scholar 

  26. Li, Y.; Wang, J. H.; Yang, Q.; Shen, G. Z. Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 2022, 9, 2202123.

    Article  CAS  Google Scholar 

  27. Liu, Q. H.; Yin, L.; Zhao, C.; Wu, Z. A.; Wang, J. Y.; Yu, X. R.; Wang, Z. X.; Wei, W. X.; Liu, Y. N.; Mitrovic, I. Z. et al. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 2022, 97, 107171.

    Article  CAS  Google Scholar 

  28. Hao, Z. Q.; Wang, H. Y.; Jiang, S.; Qian, J.; Xu, X.; Li, Y. T.; Pei, M. J.; Zhang, B. W.; Guo, J. H.; Zhao, H. J. et al. Retina-inspired self-powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions. Adv. Sci. 2022, 9, 2103494.

    Article  CAS  Google Scholar 

  29. Liang, J.; Li, J.; Zhu, H. F.; Han, Y. X.; Wang, Y. R.; Wang, C. X.; Jin, Z.; Zhang, G. M.; Liu, J. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices. Nanoscale 2016, 8, 16017–16025.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, H. M.; Jeong, H. J.; Ok, K. C.; Rim, Y. S.; Park, J. S. Near-infrared photoresponsivity of ZnON thin-film transistor with energy band-tunable semiconductor. ACS Appl. Mater. Interfaces 2018, 10, 30541–30547.

    Article  CAS  PubMed  Google Scholar 

  31. Park, H. L.; Kim, H.; Lim, D.; Zhou, H. Y.; Kim, Y. H.; Lee, Y.; Park, S.; Lee, T. W. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 2020, 32, 1906899.

    Article  CAS  Google Scholar 

  32. Al-Mamun, M.; Zhang, H. M.; Liu, P. R.; Wang, Y.; Cao, J.; Zhao, H. J. Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv. 2014, 4, 21277.

    Article  ADS  CAS  Google Scholar 

  33. Toth, P. S.; Velický, M.; Bissett, M. A.; Slater, T. J. A.; Savjani, N.; Rabiu, A. K.; Rakowski, A. M.; Brent, J. R.; Haigh, S. J.; O’Brien, P. et al. Asymmetric MoS2/graphene/metal sandwiches: Preparation, characterization, and application. Adv. Mater. 2016, 28, 8256–8264.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y. P.; Li, Y. H.; Peng, F.; Lin, Y.; Yang, S. Y.; Zhang, S. S.; Wang, H. J.; Cao, Y. H.; Yu, H. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 241, 236–245.

    Article  CAS  Google Scholar 

  35. Lee, E.; Kim, T.; Benayad, A.; Hur, J.; Park, G. S.; Jeon, S. High mobility and high stability glassy metal-oxynitride materials and devices. Sci. Rep. 2016, 6, 23940.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Z. D.; Li, Q.; Yuan, Y.; Yang, L. Z.; Zhang, H. B.; Liu, Z. W.; Ouyang, J. T.; Chen, Q. N doped ZnO (N:ZnO) film prepared by reactive HiPIMS deposition technique. AIP Adv. 2020, 10, 035122.

    Article  ADS  CAS  Google Scholar 

  37. Yang, J. T.; Ge, C.; Du, J. Y.; Huang, H. Y.; He, M.; Wang, C.; Lu, H. B.; Yang, G. Z.; Jin, K. J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548.

    Article  Google Scholar 

  38. Gong, J. D.; Wei, H. H.; Ni, Y.; Zhang, S.; Du, Y.; Xu, W. T. Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater. Today Phys. 2021, 21, 100540.

    Article  CAS  Google Scholar 

  39. Kim, S. J.; Lee, T. H.; Yang, J. M.; Yang, J. W.; Lee, Y. J.; Choi, M. J.; Lee, S. A.; Suh, J. M.; Kwak, K. J.; Baek, J. H. et al. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 2022, 52, 19–30.

    Article  CAS  Google Scholar 

  40. Tang, B. S.; Veluri, H.; Li, Y. D.; Yu, Z. G.; Waqar, M.; Leong, J. F.; Sivan, M.; Zamburg, E.; Zhang, Y. W.; Wang, J. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 2022, 13, 3037.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo, F. F.; Wu, Y. Z.; Tong, J. W.; Tian, F. B.; Zhang, X. M. Resistive switching and artificial synaptic performances of memristor based on low-dimensional bismuth halide perovskites. Nano Res. 2023, 16, 10108–10119.

    Article  ADS  CAS  Google Scholar 

  42. Huang, F.; Fang, F. F.; Zheng, Y.; You, Q.; Li, H. N.; Fang, S. F.; Cong, X. N.; Jiang, K.; Wang, Y.; Han, C. et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for highperformance neuromorphic applications. Nano Res. 2023, 16, 1304–1312.

    Article  ADS  CAS  Google Scholar 

  43. Xi, F. B.; Han, Y.; Liu, M. S.; Bae, J. H.; Tiedemann, A.; Grützmacher, D.; Zhao, Q. T. Artificial synapses based on ferroelectric schottky barrier field-effect transistors for neuromorphic applications. ACS Appl. Mater. Interfaces 2021, 13, 32005–32012.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, X.; Zhou, X.; Cui, A. Y.; Deng, M. H.; Xu, X. H.; Xu, L. P.; Ye, Y.; Jiang, K.; Shang, L. Y.; Zhu, L. Q. et al. Flexo-photoelectronic effect in n-type/p-type two-dimensional semiconductors and a deriving light-stimulated artificial synapse. Mater. Horiz. 2021, 8, 1985–1997.

    Article  CAS  PubMed  Google Scholar 

  45. Zhong, Y. N.; Wang, T.; Gao, X.; Xu, J. L.; Wang, S. D. Synapselike organic thin film memristors. Adv. Funct. Mater. 2018, 28, 1800854.

    Article  Google Scholar 

  46. Ji, X. D.; Paulsen, B. D.; Chik, G. K. K.; Wu, R. H.; Yin, Y. Y.; Chan, P. K. L.; Rivnay, J. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 2021, 12, 2480.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, C.; Han, X. W.; Han, J. Y.; He, M. Y.; Peng, S. L.; Zhang, C. Y.; Liu, X. C.; Gou, J.; Wang, J. Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater. 2022, 32, 2113053.

    Article  CAS  Google Scholar 

  48. Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765.

    Article  CAS  Google Scholar 

  50. Kim, S. K.; Kim, J. Y.; Choi, S. Y.; Lee, J. Y.; Jeong, H. Y. Direct observation of conducting nanofilaments in graphene-oxide-resistive switching memory. Adv. Funct. Mater. 2015, 25, 6710–6715.

    Article  CAS  Google Scholar 

  51. Harikesh, P. C.; Yang, C. Y.; Tu, D. Y.; Gerasimov, J. Y.; Dar, A. M.; Armada-Moreira, A.; Massetti, M.; Kroon, R.; Bliman, D.; Olsson, R. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dulcis, D.; Spitzer, N. C. Illumination controls differentiation of dopamine neurons regulating behaviour. Nature 2008, 456, 195–201.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin, S. J.; Grimwood, P. D.; Morris, R. G. M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711.

    Article  CAS  PubMed  Google Scholar 

  54. Kim, D.; Min, W. K.; Kim, H. T.; Chung, J.; Kim, M. S.; Kim, H. J. Realization of enhanced long-term visual memory for indium-gallium-zinc oxide-based optical synaptic transistor. Adv. Opt. Mater. 2022, 10, 2200558.

    Article  CAS  Google Scholar 

  55. Atkinson, R. C.; Shiffrin, R. M. Human memory: A proposed system and its control processes. Psychol. Learn. Motiv. 1968, 2, 89–195.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62174068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li, Wenjing Yue or Guozhen Shen.

Electronic Supplementary Material

12274_2023_6004_MOESM1_ESM.pdf

N:ZnO/MoS2-heterostructured flexible synaptic devices enabling optoelectronic co-modulation for robust artificial visual systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, W., Li, Y. et al. N:ZnO/MoS2-heterostructured flexible synaptic devices enabling optoelectronic co-modulation for robust artificial visual systems. Nano Res. 17, 1902–1912 (2024). https://doi.org/10.1007/s12274-023-6004-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6004-4

Keywords

Navigation