Skip to main content
Log in

Failure-analysis of carbon nanotubes and their extreme applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The study of material failure is crucial for the design of engineering applications, as it can have significant social and economic impacts. Carbon nanotubes (CNTs), with their exceptional electrical, mechanical, and thermal properties, hold immense potential for a wide range of cutting-edge applications such as superstrong fiber, lightning strike protector, and even space elevator. This review provides an overview of the advancement in understanding the mechanical and electrical failure study of CNTs and their assemblies, serving as a comprehensive reference for utilizing CNTs in various forms. To begin, we emphasize the importance of studying material failure and provide a brief introduction to CNTs. Subsequently, we explore the mechanical and electrical failure characteristics of CNTs and their assemblies, along with notable examples of applications that utilize their failure-resistant properties, such as flywheel energy storage and lightning strike protection. Lastly, we present perspectives associated with analyzing CNT failure and its implications for extreme applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    CAS  Google Scholar 

  2. Qian, D.; Wagner, G. J.; Liu, W. K.; Yu, M. F.; Ruoff, R. S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533.

    Google Scholar 

  3. Ruoff, R. S.; Qian, D.; Liu, W. K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. C. R. Phys. 2003, 4, 993–1008.

    CAS  Google Scholar 

  4. Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

    Google Scholar 

  5. Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Superdurable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

    CAS  Google Scholar 

  6. Bai, Y. X.; Yue, H. J.; Zhang, R. F.; Qian, W. Z.; Zhang, Z.; Wei, F. Mechanical behavior of single and bundled defect-free carbon nanotubes. Acc. Mater. Res. 2021, 2, 998–1009.

    CAS  Google Scholar 

  7. Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

    CAS  Google Scholar 

  8. Zhang, X. H.; Lu, W. B.; Zhou, G. H.; Li, Q. W. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 2020, 32, 1902028.

    CAS  Google Scholar 

  9. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

    CAS  Google Scholar 

  10. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    CAS  Google Scholar 

  11. Chu, H. T.; Hu, X. H.; Wang, Z.; Mu, J. K.; Li, N.; Zhou, X. S.; Fang, S. L.; Haines, C. S.; Park, J. W.; Qin, S. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498.

    CAS  Google Scholar 

  12. Wang, J. X.; Gao, D. C.; Lee, P. S. Recent progress in artificial muscles for interactive soft robotics. Adv. Mater. 2021, 33, 2003088.

    CAS  Google Scholar 

  13. Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D. N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 2013, 4, 2202.

    Google Scholar 

  14. Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

    Google Scholar 

  15. Gates, B. D. Flexible electronics. Science 2009, 323, 1566–1567.

    CAS  Google Scholar 

  16. Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C. L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H. et al. Grand challenges in the science of wind energy. Science 2019, 366, eaau2027.

    CAS  Google Scholar 

  17. Chakravarthi, D. K.; Khabashesku, V. N.; Vaidyanathan, R.; Blaine, J.; Yarlagadda, S.; Roseman, D.; Zeng, Q.; Barrera, E. V. Carbon fiber-bismaleimide composites filled with nickel-coated single-walled carbon nanotubes for lightning-strike protection. Adv. Funct. Mater. 2011, 21, 2527–2533.

    CAS  Google Scholar 

  18. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

    CAS  Google Scholar 

  19. Asaadi, N.; Parhizkar, M.; Bidadi, H.; Aref, S. M.; Ghafouri, M. The effects of multiwall carbon nanotubes on the electrical characteristics of ZnO-based composites. J. Theor. Appl. Phys. 2020, 14, 329–337.

    Google Scholar 

  20. Edwards, B. C. Design and deployment of a space elevator. Acta Astronaut. 2000, 47, 735–744.

    Google Scholar 

  21. Yakobson, B. I.; Smalley, R. E. Fullerene nanotubes: C1,000,000 and beyond: Some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family. Am. Sci. 1997, 85, 324–337.

    Google Scholar 

  22. Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Gao, F.; Gao, R. Y.; Qu, Y. S.; Cui, X. W.; Wang, G. R.; Liu, L. Q.; Zhang, H. et al. Mechanism study of advanced lightning strike protection composite systems using a miniature tip discharge system. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107394.

    CAS  Google Scholar 

  23. Hedlund, M.; Lundin, J.; De Santiago, J.; Abrahamsson, J.; Bernhoff, H. Flywheel energy storage for automotive applications. Energies 2015, 8, 10636–10663.

    Google Scholar 

  24. Yakobson, B. I.; Campbell, M. P.; Brabec, C. J.; Bernholc, J. High strain rate fracture and C-chain unraveling in carbon nanotubes. Comp. Mater. Sci. 1997, 8, 341–348.

    CAS  Google Scholar 

  25. Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S. Atomistic simulations of nanotube fracture. Phys. Rev. B 2002, 65, 235430.

    Google Scholar 

  26. Wei, C. Y.; Cho, K.; Srivastava, D. Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 2003, 67, 115407.

    Google Scholar 

  27. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications; Elsevier: Kidlington, 1996.

    Google Scholar 

  28. Nardelli, M. B.; Yakobson, B. I.; Bernholc, J. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 1998, 81, 4656–4659.

    CAS  Google Scholar 

  29. Yakobson, B. I. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl. Phys. Lett. 1998, 72, 918–920.

    CAS  Google Scholar 

  30. Huang, J. Y.; Chen, S.; Wang, Z. Q.; Kempa, K.; Wang, Y. M.; Jo, S. H.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Superplastic carbon nanotubes. Nature 2006, 439, 281.

    CAS  Google Scholar 

  31. Nardelli, M. B.; Yakobson, B. I.; Bernholc, J. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 1998, 57, R4277–R4280.

    Google Scholar 

  32. Samsonidze, G. G.; Samsonidze, G. G.; Yakobson, B. I. Kinetic theory of symmetry-dependent strength in carbon nanotubes. Phys. Rev. Lett. 2002, 88, 065501.

    Google Scholar 

  33. Dumitrica, T.; Hua, M.; Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2006, 103, 6105–6109.

    CAS  Google Scholar 

  34. Yuan, Q. H.; Li, L.; Li, Q. S.; Ding, F. Effect of metal impurities on the tensile strength of carbon nanotubes: A theoretical study. J. Phys. Chem. C 2013, 117, 5470–5474.

    CAS  Google Scholar 

  35. Zhu, L. Y.; Wang, J. L.; Ding, F. The great reduction of a carbon nanotube’s mechanical performance by a few topological defects. ACS Nano 2016, 10, 6410–6415.

    CAS  Google Scholar 

  36. Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.

    CAS  Google Scholar 

  37. Lourie, O.; Cox, D. M.; Wagner, H. D. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 1998, 81, 1638–1641.

    CAS  Google Scholar 

  38. Srivastava, D.; Menon, M.; Cho, K. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 1999, 83, 2973–2976.

    CAS  Google Scholar 

  39. Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. In Carbon Nanotubes; Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Eds.; Springer: Berlin, 2001, pp 287–327.

    Google Scholar 

  40. Zhang, P. H.; Lammert, P. E.; Crespi, V. H. Plastic deformations of carbon nanotubes. Phys. Rev. Lett. 1998, 81, 5346–5349.

    CAS  Google Scholar 

  41. Zhang, P. H.; Crespi, V. H. Nucleation of carbon nanotubes without pentagonal rings. Phys. Rev. Lett. 1999, 83, 1791–1794.

    CAS  Google Scholar 

  42. Xin, H.; Han, Q.; Yao, X. H. Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon 2007, 45, 2486–2495.

    CAS  Google Scholar 

  43. Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 1996, 104, 2089–2092.

    CAS  Google Scholar 

  44. Falvo, M. R.; Clary, G. J.; Taylor II, R. M.; Chi, V.; Brooks, F. P. Jr.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584.

    CAS  Google Scholar 

  45. Clauss, W.; Bergeron, D. J.; Johnson, A. T. Atomic resolution STM imaging of a twisted single-wall carbon nanotube. Phys. Rev. B 1998, 58, R4266–R4269.

    CAS  Google Scholar 

  46. Bernholc, J.; Brabec, C.; Nardelli, M. B.; Maiti, A.; Roland, C.; Yakobson, B. I. Theory of growth and mechanical properties of nanotubes. Appl. Phys. A 1998, 67, 39–46.

    CAS  Google Scholar 

  47. Knechtel, W. H.; Düsberg, G. S.; Blau, W. J.; Hernández, E.; Rubio, A. Reversible bending of carbon nanotubes using a transmission electron microscope. Appl. Phys. Lett. 1998, 73, 1961–1963.

    CAS  Google Scholar 

  48. Qian, D.; Liu, W. K.; Subramoney, S.; Ruoff, R. S. Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 185–191.

    CAS  Google Scholar 

  49. Salvetat, J. P.; Bonard, J. M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A 1999, 69, 255–260.

    CAS  Google Scholar 

  50. Poncharal, P.; Wang, Z. L.; Ugarte, D.; De Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.

    CAS  Google Scholar 

  51. Kutana, A.; Giapis, K. P. Transient deformation regime in bending of single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97, 245501.

    CAS  Google Scholar 

  52. Arroyo, M.; Belytschko, T. Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 215505.

    CAS  Google Scholar 

  53. Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture. J. Comput. Aided Mater. Des. 1996, 3, 173–182.

    CAS  Google Scholar 

  54. Chopra, N. G.; Benedict, L. X.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138.

    CAS  Google Scholar 

  55. Qian, D.; Liu, W. K.; Ruoff, R. S. Load transfer mechanism in carbon nanotube ropes. Compos. Sci. Technol. 2003, 63, 1561–1569.

    CAS  Google Scholar 

  56. Pedrielli, A.; Dapor, M.; Gkagkas, K.; Taioli, S.; Pugno, N. M. Mechanical properties of twisted carbon nanotube bundles with carbon linkers from molecular dynamics simulations. Int. J. Mol. Sci. 2023, 24, 2473.

    CAS  Google Scholar 

  57. Huang, Y.; Wu, J.; Hwang, K. C. Thickness of graphene and singlewall carbon nanotubes. Phys. Rev. B 2006, 74, 245413.

    Google Scholar 

  58. Wang, Y.; Wei, F.; Gu, G. S.; Yu, H. Agglomerated carbon nanotubes and its mass production in a fluidized-bed reactor. Phys. B: Cond. Matter. 2002, 323, 327–329.

    CAS  Google Scholar 

  59. Wang, Y.; Wei, F.; Luo, G. H.; Yu, H.; Gu, G. S. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem. Phys. Lett. 2002, 364, 568–572.

    CAS  Google Scholar 

  60. Wick, P.; Manser, P.; Limbach, L. K.; Dettlaff-Weglikowska, U.; Krumeich, F.; Roth, S.; Stark, W. J.; Bruinink, A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 2007, 168, 121–131.

    CAS  Google Scholar 

  61. Wei, F.; Zhang, Q.; Qian, W. Z.; Yu, H.; Wang, Y.; Luo, G. H.; Xu, G. H.; Wang, D. Z. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space-time analysis. Powd. Technol. 2008, 183, 10–20.

    CAS  Google Scholar 

  62. Chhowalla, M.; Teo, K. B. K.; Ducati, C.; Rupesinghe, N. L.; Amaratunga, G. A. J.; Ferrari, A. C.; Roy, D.; Robertson, J.; Milne, W. I. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001, 90, 5308–5317.

    CAS  Google Scholar 

  63. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282, 1105–1107.

    CAS  Google Scholar 

  64. Choi, Y. C.; Shin, Y. M.; Lee, Y. H.; Lee, B. S.; Park, G. S.; Choi, W. B.; Lee, N. S.; Kim, J. M. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2000, 76, 2367–2369.

    CAS  Google Scholar 

  65. Jo, S. H.; Tu, Y.; Huang, Z. P.; Carnahan, D. L.; Wang, D. Z.; Ren, Z. F. Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 2003, 82, 3520–3522.

    CAS  Google Scholar 

  66. Hongo, H.; Nihey, F.; Ochiai, Y. Horizontally directional singlewall carbon nanotubes grown by chemical vapor deposition with a local electric field. J. Appl. Phys. 2007, 101, 024325.

    Google Scholar 

  67. Rao, F. B.; Zhou, Y. X.; Li, T.; Wang, Y. L. Horizontally aligned single-walled carbon nanotubes can bridge wide trenches and climb high steps. Chem. Eng. J. 2010, 157, 590–597.

    CAS  Google Scholar 

  68. Orofeo, C. M.; Ago, H.; Ikuta, T.; Takahasi, K.; Tsuji, M. Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate. Nanoscale 2010, 2, 1708–1714.

    CAS  Google Scholar 

  69. Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.

    CAS  Google Scholar 

  70. Reina, A.; Hofmann, M.; Zhu, D.; Kong, J. Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J. Phys. Chem. C 2007, 111, 7292–7297.

    CAS  Google Scholar 

  71. An, J. N.; Zhan, Z. Y.; Krishna, S. V. H.; Zheng, L. X. Growth condition mediated catalyst effects on the density and length of horizontally aligned single-walled carbon nanotube arrays. Chem. Eng. J. 2014, 237, 16–22.

    CAS  Google Scholar 

  72. Xie, H. H.; Zhang, R. F.; Zhang, Y. Y.; Zhang, W. L.; Jian, M. Q.; Wang, C. Y.; Wang, Q.; Wei, F. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes. Chem. Commun. 2014, 50, 11158–11161.

    CAS  Google Scholar 

  73. Inoue, T.; Hasegawa, D.; Badar, S.; Aikawa, S.; Chiashi, S.; Maruyama, S. Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates. J. Phys. Chem. C 2013, 117, 11804–11810.

    CAS  Google Scholar 

  74. Ago, H.; Nakamura, Y.; Ogawa, Y.; Tsuji, M. Combinatorial catalyst approach for high-density growth of horizontally aligned single-walled carbon nanotubes on sapphire. Carbon 2011, 49, 176–186.

    CAS  Google Scholar 

  75. Inoue, T.; Hasegawa, D.; Chiashi, S.; Maruyama, S. Chirality analysis of horizontally aligned single-walled carbon nanotubes: Decoupling populations and lengths. J. Mater. Chem. A 2015, 3, 15119–15123.

    CAS  Google Scholar 

  76. Liu, H. P.; Takagi, D.; Chiashi, S.; Homma, Y. The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnology 2009, 20, 345604.

    Google Scholar 

  77. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

    CAS  Google Scholar 

  78. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.

    CAS  Google Scholar 

  79. Salvetat, J. P.; Kulik, A. J.; Bonard, J. M.; Briggs, G. A. D.; Stöckli, T.; Méténier, K.; Bonnamy, S.; Béguin, F.; Burnham, N. A.; Forró, L. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 1999, 11, 161–165.

    CAS  Google Scholar 

  80. Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

    CAS  Google Scholar 

  81. Wu, Y.; Huang, M. Y.; Wang, F.; Huang, X. M. H.; Rosenblatt, S.; Huang, L. M.; Yan, H. G.; O’Brien, S. P.; Hone, J.; Heinz, T. F. Determination of the Young’s modulus of structurally defined carbon nanotubes. Nano Lett. 2008, 8, 4158–4161.

    CAS  Google Scholar 

  82. Wei, X. L.; Chen, Q.; Xu, S. Y.; Peng, L. M.; Zuo, J. M. Beam to string transition of vibrating carbon nanotubes under axial tension. Adv. Funct. Mater. 2009, 19, 1753–1758.

    CAS  Google Scholar 

  83. Chang, C. C.; Hsu, I. K.; Aykol, M.; Hung, W. H.; Chen, C. C.; Cronin, S. B. A new lower limit for the ultimate breaking strain of carbon nanotubes. ACS Nano 2010, 4, 5095–5100.

    CAS  Google Scholar 

  84. Wei, X. L.; Chen, Q.; Peng, L. M.; Cui, R. L.; Li, Y. Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J. Phys. Chem. C 2009, 113, 17002–17005.

    CAS  Google Scholar 

  85. Ganesan, Y.; Peng, C.; Lu, Y.; Ci, L.; Srivastava, A.; Ajayan, P. M.; Lou, J. Effect of nitrogen doping on the mechanical properties of carbon nanotubes. ACS Nano 2010, 4, 7637–7643.

    CAS  Google Scholar 

  86. Walters, D. A.; Ericson, L. M.; Casavant, M. J.; Liu, J.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803–3805.

    CAS  Google Scholar 

  87. Pan, Z. W.; Xie, S. S.; Lu, L.; Chang, B. H.; Sun, L. F.; Zhou, W. Y.; Wang, G.; Zhang, D. L. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 1999, 74, 3152–3154.

    CAS  Google Scholar 

  88. Li, F.; Cheng, H. M.; Bai, S.; Su, G.; Dresselhaus, M. S. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 2000, 77, 3161–3163.

    CAS  Google Scholar 

  89. Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555.

    CAS  Google Scholar 

  90. Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173–178.

    Google Scholar 

  91. Cronin, S. B.; Swan, A. K.; Unlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.

    CAS  Google Scholar 

  92. Olofsson, N.; Ek-Weis, J.; Eriksson, A.; Idda, T.; Campbell, E. E. B. Determination of the effective Young’s modulus of vertically aligned carbon nanotube arrays: A simple nanotube-based varactor. Nanotechnology 2009, 20, 385710.

    Google Scholar 

  93. Peng, B.; Locascio, M.; Zapol, P.; Li, S. Y.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 2008, 3, 626–631.

    CAS  Google Scholar 

  94. Charlier, J. C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069.

    CAS  Google Scholar 

  95. Choi, H. J.; Ihm, J.; Louie, S. G.; Cohen, M. L. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2917–2920.

    CAS  Google Scholar 

  96. Krasheninnikov, A. V.; Nordlund, K.; Sirviö, M.; Salonen, E.; Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 2001, 63, 245405.

    Google Scholar 

  97. Sammalkorpi, M.; Krasheninnikov, A.; Kuronen, A.; Nordlund, K.; Kaski, K. Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 2004, 70, 245416.

    Google Scholar 

  98. Chico, L.; Benedict, L. X.; Louie, S. G.; Cohen, M. L. Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 1996, 54, 2600–2606.

    CAS  Google Scholar 

  99. Charlier, J. C.; Ebbesen, T. W.; Lambin, P. Structural and electronic properties of pentagon–heptagon pair defects in carbon nanotubes. Phys. Rev. B 1996, 53, 11108–11113.

    CAS  Google Scholar 

  100. Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.

    CAS  Google Scholar 

  101. Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.

    CAS  Google Scholar 

  102. Suhr, J.; Victor, P.; Ci, L.; Sreekala, S.; Zhang, X.; Nalamasu, O.; Ajayan, P. M. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2007, 2, 417–421.

    CAS  Google Scholar 

  103. Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

    CAS  Google Scholar 

  104. Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from −196 to 1000 C. Science 2010, 330, 1364–1368.

    CAS  Google Scholar 

  105. Ren, Y.; Li, F.; Cheng, H. M.; Liao, K. Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite. Carbon 2003, 41, 2177–2179.

    CAS  Google Scholar 

  106. Ma, G.; Ren, Y.; Guo, J.; Xiao, T.; Li, F.; Cheng, H. M.; Zhou, Z. R.; Liao, K. How long can single-walled carbon nanotube ropes last under static or dynamic fatigue. Appl. Phys. Lett. 2008, 92, 083105.

    Google Scholar 

  107. Xu, F.; Mo, X. L.; Wan, S.; Jiang, C. Q.; Hao, H. W.; Li, L. M. High-performance flexural fatigue of carbon nanotube yarns. Chin. Sci. Bull. 2014, 59, 3831–3834.

    CAS  Google Scholar 

  108. Salvetat, J. P.; Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stöckli, T.; Burnham, N. A.; Forró, L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 1999, 82, 944–947.

    CAS  Google Scholar 

  109. Xie, S. S.; Li, W. Z.; Pan, Z. W.; Chang, B. H.; Sun, L. F. Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 2000, 61, 1153–1158.

    CAS  Google Scholar 

  110. Filleter, T.; Bernal, R.; Li, S.; Espinosa, H. D. Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 2011, 23, 2855–2860.

    CAS  Google Scholar 

  111. Vilatela, J. J.; Elliott, J. A.; Windle, A. H. A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 2011, 5, 1921–1927.

    CAS  Google Scholar 

  112. Zhang, X. B.; Jiang, K. L.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    CAS  Google Scholar 

  113. Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895.

    CAS  Google Scholar 

  114. Beese, A. M.; Wei, X. D.; Sarkar, S.; Ramachandramoorthy, R.; Roenbeck, M. R.; Moravsky, A.; Ford, M.; Yavari, F.; Keane, D. T.; Loutfy, R. O. et al. Key factors limiting carbon nanotube yarn strength: Exploring processing-structure-property relationships. ACS Nano 2014, 8, 11454–11466.

    CAS  Google Scholar 

  115. Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447–1450.

    CAS  Google Scholar 

  116. Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.

    CAS  Google Scholar 

  117. Yakobson, B. I.; Samsonidze, G.; Samsonidze, G. G. Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 2000, 38, 1675–1680.

    CAS  Google Scholar 

  118. Daniels, H. E. The statistical theory of the strength of bundles of threads. I. Proc. Roy. Soc. A Math. Phys. Sci. 1997, 183, 405–435.

    Google Scholar 

  119. Zhang, X. F.; Li, Q. W.; Holesinger, T. G.; Arendt, P. N.; Huang, J. Y.; Kirven, P. D.; Clapp, T. G.; DePaula, R. F.; Liao, X. Z.; Zhao, Y. H. et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 2007, 19, 4198–4201.

    CAS  Google Scholar 

  120. Minus, M.; Kumar, S. The processing, properties, and structure of carbon fibers. JOM 2005, 57, 52–58.

    CAS  Google Scholar 

  121. Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100, 791–802.

    CAS  Google Scholar 

  122. Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.

    CAS  Google Scholar 

  123. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    CAS  Google Scholar 

  124. Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334.

    CAS  Google Scholar 

  125. Zhang, S. J.; Koziol, K. K. K.; Kinloch, I. A.; Windle, A. H. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 2008, 4, 1217–1222.

    CAS  Google Scholar 

  126. Dalton, A. B.; Collins, S.; Razal, J.; Munoz, E.; Ebron, V. H.; Kim, B. G.; Coleman, J. N.; Ferraris, J. P.; Baughman, R. H. Continuous carbon nanotube composite fibers: Properties, potential applications, and problems. J. Mater. Chem. 2004, 14, 1–3.

    CAS  Google Scholar 

  127. Wang, A. L. Spinning methods for carbon nanotube fibers. Ph. D. Dissertation, University of Cincinnati, Cincinnati, OH, USA, 2014.

    Google Scholar 

  128. Kozlov, M. E.; Capps, R. C.; Sampson, W. M.; Ebron, V. H.; Ferraris, J. P.; Baughman, R. H. Spinning solid and hollow polymerfree carbon nanotube fibers. Adv. Mater. 2005, 17, 614–617.

    CAS  Google Scholar 

  129. Steinmetz, J.; Glerup, M.; Paillet, M.; Bernier, P.; Holzinger, M. Production of pure nanotube fibers using a modified wet-spinning method. Carbon 2005, 43, 2397–2400.

    CAS  Google Scholar 

  130. Zhang, Y. Y.; Zou, G. F.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. Tailoring the morphology of carbon nanotube arrays: From spinnable forests to undulating foams. ACS Nano 2009, 3, 2157–2162.

    CAS  Google Scholar 

  131. Huynh, C. P.; Hawkins, S. C. Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 2010, 48, 1105–1115.

    CAS  Google Scholar 

  132. Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.

    CAS  Google Scholar 

  133. Nakayama, Y. Synthesis, nanoprocessing, and yarn application of carbon nanotubes. Jpn. J. Appl. Phys. 2008, 47, 8149–8156.

    CAS  Google Scholar 

  134. Liu, K.; Sun, Y. H.; Zhou, R. F.; Zhu, H. Y.; Wang, J. P.; Liu, L.; Fan, S. S.; Jiang, K. L. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 2010, 21, 045708.

    Google Scholar 

  135. Tran, C. D.; Humphries, W.; Smith, S. M.; Huynh, C.; Lucas, S. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 2009, 47, 2662–2670.

    CAS  Google Scholar 

  136. Zhang, X. F.; Li, Q. W.; Tu, Y.; Li, Y.; Coulter, J. Y.; Zheng, L. X.; Zhao, Y. H.; Jia, Q. X.; Peterson, D. E.; Zhu, Y. T. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 2007, 3, 244–248.

    CAS  Google Scholar 

  137. Zhu, C.; Cheng, C.; He, Y. H.; Wang, L.; Wong, T. L.; Fung, K. K.; Wang, N. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns. Carbon 2011, 49, 4996–5001.

    CAS  Google Scholar 

  138. Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 2014, 5, 3848.

    CAS  Google Scholar 

  139. Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.

    CAS  Google Scholar 

  140. Motta, M.; Li, Y. L.; Kinloch, I.; Windle, A. Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 2005, 5, 1529–1533.

    CAS  Google Scholar 

  141. Motta, M.; Moisala, A.; Kinloch, I. A.; Windle, A. H. High performance fibres from “dog bone” carbon nanotubes. Adv. Mater. 2007, 19, 3721–3726.

    CAS  Google Scholar 

  142. Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

    CAS  Google Scholar 

  143. Lee, J.; Lee, D. M.; Jung, Y.; Park, J.; Lee, H. S.; Kim, Y. K.; Park, C. R.; Jeong, H. S.; Kim, S. M. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 2019, 10, 2962.

    Google Scholar 

  144. Lee, D. M.; Park, J.; Lee, J.; Lee, S. H.; Kim, S. H.; Kim, S. M.; Jeong, H. S. Improving mechanical and physical properties of ultra-thick carbon nanotube fiber by fast swelling and stretching process. Carbon 2021, 172, 733–741.

    CAS  Google Scholar 

  145. Zhang, X.; De Volder, M.; Zhou, W. B.; Issman, L.; Wei, X. J.; Kaniyoor, A.; Portas, J. T.; Smail, F.; Wang, Z. B.; Wang, Y. C. et al. Simultaneously enhanced tenacity, rupture work, and thermal conductivity of carbon nanotube fibers by raising effective tube portion. Sci. Adv. 2022, 8, eabq3515.

    CAS  Google Scholar 

  146. Kanagaraj, S.; Varanda, F. R.; Zhil’tsova, T. V.; Oliveira, M. S. A.; Simões, J. A. O. Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 2007, 67, 3071–3077.

    CAS  Google Scholar 

  147. Tang, L. C.; Zhang, H.; Han, J. H.; Wu, X. P.; Zhang, Z. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos. Sci. Technol. 2011, 72, 7–13.

    CAS  Google Scholar 

  148. Sahoo, N. G.; Cheng, H. K. F.; Cai, J. W.; Li, L.; Chan, S. H.; Zhao, J. H.; Yu, S. Z. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater. Chem. Phys. 2009, 117, 313–320.

    CAS  Google Scholar 

  149. Luo, J. J.; Wen, Y. Y.; Jia, X. Z.; Lei, X. D.; Gao, Z. F.; Jian, M. Q.; Xiao, Z. H.; Li, L. Y.; Zhang, J. W.; Li, T. et al. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat. Commun. 2023, 14, 3019.

    CAS  Google Scholar 

  150. Chen, Y. L.; Liu, B.; He, X. Q.; Huang, Y.; Hwang, K. C. Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 2010, 70, 1360–1367.

    CAS  Google Scholar 

  151. Cha, J.; Kim, J.; Ryu, S.; Hong, S. H. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos. Part B: Eng. 2019, 162, 283–288.

    CAS  Google Scholar 

  152. Song, L.; Zhang, H.; Zhang, Z.; Xie, S. S. Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Compos. Part A: Appl. Sci. Manuf. 2007, 38, 388–392.

    Google Scholar 

  153. Koirala, P.; Van De Werken, N.; Lu, H. B.; Baughman, R. H.; Ovalle-Robles, R.; Tehrani, M. Using ultra-thin interlaminar carbon nanotube sheets to enhance the mechanical and electrical properties of carbon fiber reinforced polymer composites. Compos. Part B: Eng. 2021, 216, 108842.

    CAS  Google Scholar 

  154. Holm, S. R. Modelling and optimization of a permanent-magnet machine in a flywheel. Ph. D. Dissertation, Technische Universiteit Delft, Delft, The Netherlands, 2003.

    Google Scholar 

  155. Hebner, R.; Beno, J.; Walls, A. Flywheel batteries come around again. IEEE Spectr. 2002, 39, 46–51.

    Google Scholar 

  156. Pei, Y. L.; Cavagnino, A.; Vaschetto, S.; Chai, F.; Tenconi, A. Flywheel energy storage systems for power systems application. In 2017 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 2017, pp 492–501.

    Google Scholar 

  157. Lazarewicz, M. L.; Rojas, A. Grid frequency regulation by recycling electrical energy in flywheels. In IEEE Power Engineering Society General Meeting, 2004, Denver, CO, USA, 2004, pp 2038–2042.

  158. Li, N.; Hedayati, M.; Hedman, K. W. Utilizing flywheels to provide regulation services for systems with renewable resources. In 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015, pp 1–5.

  159. Zhang, F.; Tokombayev, M.; Song, Y. H.; Gross, G. Effective flywheel energy storage (FES) offer strategies for frequency regulation service provision. In 2014 Power Systems Computation Conference, Wroclaw, Poland, 2014, pp 1–7.

  160. Babuska, V.; Beatty, S. M.; DeBlonk, B. J.; Fausz, J. A review of technology developments in flywheel attitude control and energy transmission systems. In 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), Big Sky, MT, USA, 2004, pp 2784–2800.

  161. Wagner, R. C.; Boyle, D. R.; Decker, K. Commercialization of flywheel energy storage technology on the international space station. In IECEC’ 02. 2002 37th Intersociety Energy Conversion Engineering Conference, 2002, Washington, DC, USA, 2004, pp 146–150.

  162. Shigematsu, T. Redox flow battery for energy storage. SEI Techn. Rev. 2011, 73, 4–13.

    Google Scholar 

  163. Inage, S. I. Prospects for large-scale energy storage in decarbonised power grids. IEA: Paris, 2009.

    Google Scholar 

  164. Lazarewicz, M. L.; Ryan, T. M. Integration of flywheel-based energy storage for frequency regulation in deregulated markets. In IEEE PES General Meeting, Minneapolis, MN, USA, 2010, pp 1–6.

  165. Byrne, R. H.; Concepcion, R. J.; Silva-Monroy, C. A. Estimating potential revenue from electrical energy storage in PJM. In 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp 1–5.

  166. Cleary, J.; Lazarewicz, M. L.; Nelson, L.; Rounds, R.; Arsenault, J. Interconnection study: 5MW of Beacon power flywheels on 23 kV line—Tyngsboro, MA. In 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, Waltham, MA, USA, 2010, pp 285–291.

  167. Bolund, B.; Bernhoff, H.; Leijon, M. Flywheel energy and power storage systems. Renew. Sustainable Energy Rev. 2007, 11, 235–258.

    Google Scholar 

  168. Sabihuddin, S.; Kiprakis, A. E.; Mueller, M. A numerical and graphical review of energy storage technologies. Energies 2014, 8, 172–216.

    Google Scholar 

  169. Luo, X.; Wang, J. H.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536.

    Google Scholar 

  170. Mousavi, G. S. M.; Faraji, F.; Majazi, A.; Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology. Renew. Sustainable Energy Rev. 2017, 67, 477–490.

    Google Scholar 

  171. Peña-Alzola, R.; Sebastián, R.; Quesada, J.; Colmenar, A. Review of flywheel based energy storage systems. In 2011 International Conference on Power Engineering, Energy and Electrical Drives, Malaga, Spain, 2011, pp 1–6.

  172. Eckroad, S.; Gyuk, I. EPRI-DOE Handbook of Energy Storage for Transmission & Distribution Applications; Electric Power Research Institute: California, 2003.

    Google Scholar 

  173. Beardsall, J. C.; Gould, C. A.; Al-Tai, M. Energy storage systems: A review of the technology and its application in power systems. In 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 2015, pp 1–6.

  174. Genta, G. Kinetic Energy Storage: Theory and Practice of Advanced Flywheel Systems; Butterworth-Heinemann: Cambridge, 2014.

    Google Scholar 

  175. Lu, W. B.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. State of the art of carbon nanotube fibers: Opportunities and challenges. Adv. Mater. 2012, 24, 1805–1833.

    CAS  Google Scholar 

  176. Luo, X. G.; Liu, Z. Y.; Xu, B.; Yu, D. L.; Tian, Y. J.; Wang, H. T.; He, J. L. Compressive strength of diamond from first-principles calculation. J. Phys. Chem. C 2010, 114, 17851–17853.

    CAS  Google Scholar 

  177. Aanstoos, T. A.; Kajs, J. P.; Brinkman, W. G.; Liu, H. P.; Ouroua, A.; Hayes, R. J.; Hearn, C.; Sarjeant, J.; Gill, H. High voltage stator for a flywheel energy storage system. IEEE Trans. Magn. 2001, 37, 242–247.

    Google Scholar 

  178. Linden, D. Handbook of Batteries; Elsevier Science, 1995, 70, 71.

  179. Kim, Y. A.; Muramatsu, H.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chem. Phys. Lett. 2004, 398, 87–92.

    CAS  Google Scholar 

  180. Telling, R. H.; Pickard, C. J.; Payne, M. C.; Field, J. E. Theoretical strength and cleavage of diamond. Phys. Rev. Lett. 2000, 84, 5160–5163.

    CAS  Google Scholar 

  181. Shenderova, O.; Brenner, D.; Ruoff, R. S. Would diamond nanorods be stronger than fullerene nanotubes. Nano Lett. 2003, 3, 805–809.

    CAS  Google Scholar 

  182. Wang, X.; Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M.; Kono, J. High-ampacity power cables of tightly-packed and aligned carbon nanotubes. Adv. Funct. Mater. 2014, 24, 3241–3249.

    Google Scholar 

  183. Mokry, G.; Pozuelo, J.; Vilatela, J. J.; Sanz, J.; Baselga, J. High ampacity carbon nanotube materials. Nanomaterials (Basel) 2019, 9, 383.

    CAS  Google Scholar 

  184. Fink, D. G.; Beaty, H. W. Standard Handbook for Electrical Engineers, 11th ed.; McGraw-Hill Companies: New York, 1978.

    Google Scholar 

  185. Preece, W. H. IV. On the heating effects of electric currents. No. III. Proc. Roy. Soc. London 1888, 44, 109–111.

    Google Scholar 

  186. Huntington, H. B.; Grone, A. R. Current-induced marker motion in gold wires. J. Phys. Chem. Solids 1961, 20, 76–87.

    CAS  Google Scholar 

  187. Lloyd, J. R. Electromigration failure. J. Appl. Phys. 1991, 69, 7601–7604.

    Google Scholar 

  188. McCusker, N. D.; Gamble, H. S.; Armstrong, B. M. Surface electromigration in copper interconnects. Microelectron. Reliab. 2000, 40, 69–76.

    Google Scholar 

  189. Li, P. C.; Young, T. K. Electromigration: The time bomb in deep-submicron ICs. IEEE Spectr. 1996, 33, 75–78.

    Google Scholar 

  190. Lloyd, J. R.; Clement, J. J. Electromigration in copper conductors. Thin Solid Films 1995, 262, 135–141.

    CAS  Google Scholar 

  191. Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

    CAS  Google Scholar 

  192. Zhang, Y.; Khanbareh, H.; Roscow, J.; Pan, M.; Bowen, C.; Wan, C. Y. Self-healing of materials under high electrical stress. Matter 2020, 3, 989–1008.

    Google Scholar 

  193. Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. A meta-analysis of conductive and strong carbon nanotube materials. Adv. Mater. 2021, 33, 2008432.

    CAS  Google Scholar 

  194. Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.

    CAS  Google Scholar 

  195. Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523–526.

    CAS  Google Scholar 

  196. Frank, S.; Poncharal, P.; Wang, Z. L.; De Heer, W. A. Carbon nanotube quantum resistors. Science 1998, 280, 1744–1746.

    CAS  Google Scholar 

  197. Huang, J. Y.; Chen, S.; Jo, S. H.; Wang, Z.; Han, D. X.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 94, 236802.

    CAS  Google Scholar 

  198. Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174.

    CAS  Google Scholar 

  199. Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.

    CAS  Google Scholar 

  200. Park, J. G.; Li, S.; Liang, R.; Fan, X. Y.; Zhang, C.; Wang, B. The high current-carrying capacity of various carbon nanotube-based buckypapers. Nanotechnology 2008, 19, 185710.

    Google Scholar 

  201. Radosavljević, M.; Lefebvre, J.; Johnson, A. T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 2001, 64, 241307.

    Google Scholar 

  202. Suzuki, M.; Ominami, Y.; Ngo, Q.; Yang, C. Y.; Cassell, A. M.; Li, J. Current-induced breakdown of carbon nanofibers. J. Appl. Phys. 2007, 101, 114307.

    Google Scholar 

  203. Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.

    Google Scholar 

  204. Song, L.; Toth, G.; Wei, J. Q.; Liu, Z.; Gao, W.; Ci, L.; Vajtai, R.; Endo, M.; Ajayan, P. M. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers. Nanotechnology 2012, 23, 015703.

    Google Scholar 

  205. Zhao, J.; Sun, H. Y.; Dai, S.; Wang, Y.; Zhu, J. Electrical breakdown of nanowires. Nano Lett. 2011, 11, 4647–4651.

    CAS  Google Scholar 

  206. Liu, P.; Hu, D. C. M.; Tran, T. Q.; Jewell, D.; Duong, H. M. Electrical property enhancement of carbon nanotube fibers from post treatments. Colloids Surf. A Physicochem. Eng. Aspects 2016, 509, 384–389.

    CAS  Google Scholar 

  207. Cress, C. D.; Ganter, M. J.; Schauerman, C. M.; Soule, K.; Rossi, J. E.; Lawlor, C. C.; Puchades, I.; Ubnoske, S. M.; Bucossi, A. R.; Landi, B. J. Carbon nanotube wires with continuous current rating exceeding 20 amperes. J. Appl. Phys. 2017, 122, 025101.

    Google Scholar 

  208. Soule, K. J.; Lawlor, C. C.; Bucossi, A. R.; Cress, C. D.; Puchades, I.; Landi, B. J. Sustaining enhanced electrical conductivity in KAuBr4-doped carbon nanotube wires at high current densities. ACS Appl. Nano Mater. 2019, 2, 7340–7349.

    CAS  Google Scholar 

  209. Gspann, T. S.; Kaniyoor, A.; Tan, W.; Kloza, P. A.; Bulmer, J. S.; Mizen, J.; Divitini, G.; Terrones, J.; Tune, D.; Cook, J. D. et al. Catalyst-mediated enhancement of carbon nanotube textiles by laser irradiation: Nanoparticle sweating and bundle alignment. Catalysts 2021, 11, 368.

    CAS  Google Scholar 

  210. Tokunaga, T.; Hayashi, Y.; Iijima, T.; Uesugi, Y.; Unten, M.; Sasaki, K.; Yamamoto, T. In-situ observation of carbon nanotube yarn during voltage application. Micron 2015, 74, 30–34.

    CAS  Google Scholar 

  211. Shukla, A.; Ravichandran, G.; Rajapakse, Y. D. S. Dynamic Failure of Materials and Structures; Springer: New York, 2010.

    Google Scholar 

  212. Coakley, J.; Higginbotham, A.; McGonegle, D.; Ilavsky, J.; Swinburne, T. D.; Wark, J. S.; Rahman, K. M.; Vorontsov, V. A.; Dye, D.; Lane, T. J. et al. Femtosecond quantification of void evolution during rapid material failure. Sci. Adv. 2020, 6, eabb4434.

    CAS  Google Scholar 

  213. Nguyen, N. T. C.; Asghari-Rad, P.; Sathiyamoorthi, P.; Zargaran, A.; Lee, C. S.; Kim, H. S. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy. Nat. Commun. 2020, 11, 2736.

    CAS  Google Scholar 

  214. Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 2020, 30, 1900657.

    CAS  Google Scholar 

  215. Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 2014, 24, 3661–3682.

    CAS  Google Scholar 

  216. Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Liu, L. Q.; Zhang, Z. Dynamic electrical failure of carbon nanotube ribbons. Carbon 2003, 202, 425–431.

    Google Scholar 

  217. Kamiyama, S.; Hirano, Y.; Okada, T.; Ogasawara, T. Lightning strike damage behavior of carbon fiber reinforced epoxy, bismaleimide, and polyetheretherketone composites. Compos. Sci. Technol. 2018, 161, 107–114.

    CAS  Google Scholar 

  218. Guo, Y. L.; Xu, Y. Z.; Wang, Q. L.; Dong, Q.; Yi, X. S.; Jia, Y. X. Eliminating lightning strike damage to carbon fiber composite structures in zone 2 of aircraft by Ni-coated carbon fiber nonwoven veils. Compos. Sci. Technol. 2019, 169, 95–102.

    CAS  Google Scholar 

  219. Guo, Y. L.; Xu, Y. Z.; Zhang, L. A.; Wei, X. T.; Dong, Q.; Yi, X. S.; Jia, Y. X. Implementation of fiberglass in carbon fiber composites as an isolation layer that enhances lightning strike protection. Compos. Sci. Technol. 2019, 174, 117–124.

    CAS  Google Scholar 

  220. Zhang, J. K.; Zhang, X. L.; Cheng, X. Q.; Hei, Y.; Xing, L. Y.; Li, Z. B. Lightning strike damage on the composite laminates with carbon nanotube films: Protection effect and damage mechanism. Compos. Part B: Eng. 2019, 168, 342–352.

    CAS  Google Scholar 

  221. Xia, Q. S.; Mei, H.; Zhang, Z. C.; Liu, Y. X.; Liu, Y. J.; Leng, J. S. Fabrication of the silver modified carbon nanotube film/carbon fiber reinforced polymer composite for the lightning strike protection application. Compos. Part B: Eng. 2020, 180, 107563.

    CAS  Google Scholar 

  222. Kumar, V.; Yokozeki, T.; Okada, T.; Hirano, Y.; Goto, T.; Takahashi, T.; Hassen, A. A.; Ogasawara, T. Polyaniline-based all-polymeric adhesive layer: An effective lightning strike protection technology for high residual mechanical strength of CFRPs. Compos. Sci. Technol. 2019, 172, 49–57.

    CAS  Google Scholar 

  223. Hirano, Y.; Yokozeki, T.; Ishida, Y.; Goto, T.; Takahashi, T.; Qian, D. N.; Ito, S.; Ogasawara, T.; Ishibashi, M. Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Compos. Sci. Technol. 2016, 127, 1–7.

    CAS  Google Scholar 

  224. Gou, J. H.; Tang, Y.; Liang, F.; Zhao, Z. F.; Firsich, D.; Fielding, J. Carbon nanofiber paper for lightning strike protection of composite materials. Compos. Part B: Eng. 2010, 41, 192–198.

    Google Scholar 

  225. Wang, B.; Duan, Y. G.; Xin, Z. B.; Yao, X. L.; Abliz, D.; Ziegmann, G. Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin film infusion method. Compos. Sci. Technol. 2018, 158, 51–60.

    CAS  Google Scholar 

  226. Kumar, V.; Yokozeki, T.; Karch, C.; Hassen, A. A.; Hershey, C. J.; Kim, S.; Lindahl, J. M.; Barnes, A.; Bandari, Y. K.; Kunc, V. Factors affecting direct lightning strike damage to fiber reinforced composites: A review. Compos. Part B: Eng. 2020, 183, 107688.

    CAS  Google Scholar 

  227. Li, Y. F.; Sun, J. R.; Li, S.; Tian, X. Y.; Yao, X. L.; Wang, B.; Zhu, Y. S.; Chen, J. L. Experimental study of the damage behaviour of laminated CFRP composites subjected to impulse lightning current. Compos. Part B: Eng. 2022, 239, 109949.

    CAS  Google Scholar 

  228. Yousefpour, K.; Lin, W. H.; Wang, Y. Q.; Park, C. Discharge and ground electrode design considerations for the lightning strike damage tolerance assessment of CFRP matrix composite laminates. Compos. Part B: Eng, 2020, 198, 108226.

    CAS  Google Scholar 

  229. Chu, H. T.; Xia, Q. S.; Zhang, Z. C.; Liu, Y. J.; Leng, J. S. Sesame-cookie topography silver nanoparticles modified carbon nanotube paper for enhancing lightning strike protection. Carbon 2019, 143, 204–214.

    CAS  Google Scholar 

  230. Li, Y. C.; Li, R. F.; Huang, L.; Wang, K.; Huang, X. R. Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Mater. Des. 2016, 99, 477–489.

    CAS  Google Scholar 

  231. Li, Y. C.; Xue, T.; Li, R. F.; Huang, X. R.; Zeng, L. J. Influence of a fiberglass layer on the lightning strike damage response of CFRP laminates in the dry and hygrothermal environments. Compos. Struct. 2018, 187, 179–189.

    Google Scholar 

  232. Kumar, V.; Sharma, S.; Pathak, A.; Singh, B. P.; Dhakate, S. R.; Yokozeki, T.; Okada, T.; Ogasawara, T. Interleaved MWCNT buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage. Compos. Struct. 2019, 210, 581–589.

    Google Scholar 

  233. Zhang, X. L.; Zhang, J. K.; Cheng, X. Q.; Huang, W. J. Carbon nanotube protected composite laminate subjected to lightning strike: Interlaminar film distribution investigation. Chin. J. Aeronaut. 2021, 34, 620–628.

    Google Scholar 

  234. Han, J. h.; Zhang, H.; Chen, M. j.; Wang, D.; Liu, Q.; Wu, Q. L.; Zhang, Z. The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates. Carbon 2015, 94, 101–113.

    CAS  Google Scholar 

  235. Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

    CAS  Google Scholar 

  236. Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.

    CAS  Google Scholar 

  237. Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Gao, F.; Gao, R. Y.; Wang, C. Y.; Wang, G. R.; Jin, H.; Liu, L. Q.; Zhang, H. et al. Superaligned carbon nanotube film/quartz fiber composites towards advanced lightweight lightning strike protection. Compos. Part A: Appl. Sci. Manuf. 2023, 173, 107617.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Nos. 11832010, 11890682, and 21721002), the National Key Basic Research Program of China (No. 2022YFA1205400), the Chinese Postdoctoral Science Foundation (Nos. E1I41IR1 and E2911IR1), the Special Research Assistant Program of Chinese Academy of Sciences (No. E37551R1), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36010200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxiang Bai or Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Bai, Y., Gao, R. et al. Failure-analysis of carbon nanotubes and their extreme applications. Nano Res. 16, 12364–12383 (2023). https://doi.org/10.1007/s12274-023-6001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6001-7

Keywords

Navigation