Skip to main content
Log in

Assembly of peptide nanostructures with controllable sizes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlled peptide assembly offers significant promise to develop synthetic supramolecular nanostructures to display material and biological properties that mimic protein assemblies in nature. Despite the progress in forming peptide nanostructures of various morphology, there exists a distinct gap between natural and synthetic assembly systems in terms of size control. Constructing nanostructures with a narrow size distribution that can be tuned over a wide range of length-scales is essential for applications that require precise spacing between objects. This approach provides the opportunity to correlate materials and biological properties of interest with assembly size. In this review, we discuss representative endeavors over the past two decades for design of size-controllable peptide nanostructures using tunable building blocks. Other mechanisms for size control, e.g., molecular frustration, template-directed peptide assembly, and multi-component peptide co-assembly, will also be discussed. We also demonstrate the applicable scopes of these strategies and suggest potential future avenues for scientific advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

    Article  CAS  Google Scholar 

  2. Luo, Q.; Hou, C. X.; Bai, Y. S.; Wang, R. B.; Liu, J. Q. Protein assembly: Versatile approaches to construct highly ordered nanostructures. Chem. Rev. 2016, 116, 13571–13632.

    Article  CAS  Google Scholar 

  3. Zhang, S. G. Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 2002, 20, 321–339.

    Article  CAS  Google Scholar 

  4. Boyle, A. L.; Woolfson, D. N. De novo designed peptides for biological applications. Chem. Soc. Rev. 2011, 40, 4295–4306.

    Article  CAS  Google Scholar 

  5. Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.

    Article  CAS  Google Scholar 

  6. Lou, S. F.; Wang, X. M.; Yu, Z. L.; Shi, L. Q. Peptide tectonics: Encoded structural complementarity dictates programmable self-assembly. Adv. Sci. 2019, 6, 1802043.

    Article  Google Scholar 

  7. Sinha, N. J.; Langenstein, M. G.; Pochan, D. J.; Kloxin, C. J.; Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 2021, 121, 13915–13935.

    Article  CAS  Google Scholar 

  8. Zhu, J.; Avakyan, N.; Kakkis, A.; Hoffnagle, A. M.; Han, K.; Li, Y. Y.; Zhang, Z. Y.; Choi, T. S.; Na, Y.; Yu, C. J. et al. Protein assembly by design. Chem. Rev. 2021, 121, 13701–13796.

    Article  CAS  Google Scholar 

  9. Conticello, V. P. Peptide-based nanomaterials: Building back better & beyond. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101066.

    Article  CAS  Google Scholar 

  10. Varga, V.; Leduc, C.; Bormuth, V.; Diez, S.; Howard, J. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 2009, 138, 1174–1183.

    Article  CAS  Google Scholar 

  11. Lai, Y. T.; King, N. P.; Yeates, T. O. Principles for designing ordered protein assemblies. Trends Cell Biol. 2012, 22, 653–661.

    Article  CAS  Google Scholar 

  12. Du, Y. L.; Lyu, Y. F.; Lin, J.; Ma, C. R.; Zhang, Q.; Zhang, Y. T.; Qiu, L. P.; Tan, W. H. Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell-T-cell contact in elevated T-cell receptor triggering. Nat. Nanotechnol., in press, https://doi.org/10.1038/s41565-023-01333-2.

  13. van der Borg, G.; Crone, N.; Boyle, A. L.; Kros, A.; Roos, W. H. SNARE mimic peptide triggered membrane fusion kinetics revealed using single particle techniques. Phys. Chem. Chem. Phys. 2023, 25, 13019–13026.

    Article  CAS  Google Scholar 

  14. Hübner, K.; Pilo-Pais, M.; Selbach, F.; Liedl, T.; Tinnefeld, P.; Stefani, F. D.; Acuna, G. P. Directing single-molecule emission with DNA origami-assembled optical antennas. Nano. Lett. 2019, 19, 6629–6634.

    Article  Google Scholar 

  15. Rinker, S.; Ke, Y. G.; Liu, Y.; Chhabra, R.; Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol. 2008, 3, 418–422.

    Article  CAS  Google Scholar 

  16. Fries, C. N.; Wu, Y. Y.; Kelly, S. H.; Wolf, M.; Votaw, N. L.; Zauscher, S.; Collier, J. H. Controlled lengthwise assembly of helical peptide nanofibers to modulate CD8+ T-cell responses. Adv. Mater. 2020, 32, 2003310.

    Article  CAS  Google Scholar 

  17. Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J. S.; Taddei, N.; Ramponi, G.; Dobson, C. M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416, 507–511.

    Article  CAS  Google Scholar 

  18. Li, W.; Tang, J.; Lee, D.; Tice, T. R.; Schwendeman, S. P.; Prausnitz, M. R. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 2022, 7, 406–420.

    Article  Google Scholar 

  19. Finbloom, J. A.; Sousa, F.; Stevens, M. M.; Desai, T. A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv. Drug Deliver. Rev. 2020, 167, 89–108.

    Article  CAS  Google Scholar 

  20. Li, D. D.; Wei, X. Y.; Xue, W. L.; Xu, L. B.; Xiang, Z. Y.; Liu, S. H.; Yang, T.; Chen, S. F. Size effect of zwitterionic peptide-based nanoscale micelles on cancer therapy. ACS Appl. Nano Mater. 2022, 5, 9344–9355.

    Article  CAS  Google Scholar 

  21. Wang, F. B.; Gnewou, O.; Wang, S. Y.; Osinski, T.; Zuo, X. B.; Egelman, E. H.; Conticello, V. P. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 2021, 4, 3217–3231.

    Article  CAS  Google Scholar 

  22. Stathopulos, P. B.; Scholz, G. A.; Hwang, Y. M.; Rumfeldt, J. A. O.; Lepock, J. R.; Meiering, E. M. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004, 13, 3017–3027.

    Article  CAS  Google Scholar 

  23. Chatani, E.; Lee, Y. H.; Yagi, H.; Yoshimura, Y.; Naiki, H.; Goto, Y. Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils. Proc. Natl. Acad. Sci. USA 2009, 106, 11119–11124.

    Article  CAS  Google Scholar 

  24. Rhys, G. G.; Wood, C. W.; Lang, E. J. M.; Mulholland, A. J.; Brady, R. L.; Thomson, A. R.; Woolfson, D. N. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 2018, 9, 4132.

    Article  Google Scholar 

  25. Kumar, P.; Paterson, N. G.; Clayden, J.; Woolfson, D. N. De novo design of discrete, stable 310-helix peptide assemblies. Nature 2022, 607, 387–392.

    Article  CAS  Google Scholar 

  26. Doll, T. A. P. F.; Dey, R.; Burkhard, P. Design and optimization of peptide nanoparticles. J. Nanobiotechnol. 2015, 13, 73.

    Article  Google Scholar 

  27. Fletcher, J. M.; Harniman, R. L.; Barnes, F. R. H.; Boyle, A. L.; Collins, A.; Mantell, J.; Sharp, T. H.; Antognozzi, M.; Booth, P. J.; Linden, N. et al. Self-assembling cages from coiled-coil peptide modules. Science 2013, 340, 595–599.

    Article  CAS  Google Scholar 

  28. Park, W. M.; Bedewy, M.; Berggren, K. K.; Keating, A. E. Modular assembly of a protein nanotriangle using orthogonally interacting coiled coils. Sci. Rep. 2017, 7, 10577.

    Article  Google Scholar 

  29. Jiang, L. H.; Zuo, X. B.; Li, J. P.; Traaseth, N. J.; Kirshenbaum, K. Programmed supramolecular assemblies using orthogonal pairs of heterodimeric coiled coil peptides. Angew. Chem., Int. Ed. 2022, 61, e202201895.

    Article  CAS  Google Scholar 

  30. Lapenta, F.; Aupič, J.; Strmšek, Ž.; Jerala, R. Coiled coil protein origami: From modular design principles towards biotechnological applications. Chem. Soc. Rev. 2018, 47, 3530–3542.

    Article  CAS  Google Scholar 

  31. Woolfson, D. N. Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. J. Biol. Chem. 2023, 299, 104579.

    Article  CAS  Google Scholar 

  32. Egelman, E. H.; Xu, C.; DiMaio, F.; Magnotti, E.; Modlin, C.; Yu, X.; Wright, E.; Baker, D.; Conticello, V. P. Structural plasticity of helical nanotubes based on coiled-coil assemblies. Structure 2015, 23, 280–289.

    Article  CAS  Google Scholar 

  33. Wang, F. B.; Gnewou, O.; Modlin, C.; Beltran, L. C.; Xu, C. F.; Su, Z. L.; Juneja, P.; Grigoryan, G.; Egelman, E. H.; Conticello, V. P. Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nat. Commun. 2021, 12, 407.

    Article  CAS  Google Scholar 

  34. Walshaw, J.; Woolfson, D. N. Open-and-shut cases in coiled-coil assembly: α-sheets and α-cylinders. Protein Sci. 2001, 10, 668–673.

    Article  CAS  Google Scholar 

  35. Hughes, S. A.; Wang, F. B.; Wang, S. Y.; Kreutzberger, M. A. B.; Osinski, T.; Orlova, A.; Wall, J. S.; Zuo, X. B.; Egelman, E. H.; Conticello, V. P. Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs. Proc. Natl. Acad. Sci. USA 2019, 116, 14456–14464.

    Article  CAS  Google Scholar 

  36. Tarabout, C.; Roux, S.; Gobeaux, F.; Fay, N.; Pouget, E.; Meriadec, C.; Ligeti, M.; Thomas, D.; Ijsselstijn, M.; Besselievre, F. et al. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proc. Natl. Acad. Sci. USA 2011, 108, 7679–7684.

    Article  CAS  Google Scholar 

  37. Valéry, C.; Paternostre, M.; Robert, B.; Gulik-Krzywicki, T.; Narayanan, T.; Dedieu, J. C.; Keller, G.; Torres, M. L.; Cherif-Cheikh, R.; Calvo, P. et al. Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl. Acad. Sci. USA 2003, 100, 10258–10262.

    Article  Google Scholar 

  38. Pieri, L.; Wang, F. B.; Arteni, A. A.; Vos, M.; Winter, J. M.; Le Du, M. H.; Artzner, F.; Gobeaux, F.; Legrand, P.; Boulard, Y. et al. Atomic structure of Lanreotide nanotubes revealed by cryo-EM. Proc. Natl. Acad. Sci. USA 2022, 119, e2120346119.

    Article  Google Scholar 

  39. Zhao, Y. R.; Yang, W.; Wang, D.; Wang, J. Q.; Li, Z. Y.; Hu, X. Z.; King, S.; Rogers, S.; Lu, J. R.; Xu, H. Controlling the diameters of nanotubes self-assembled from designed peptide bolaphiles. Small 2018, 14, 1703216.

    Article  Google Scholar 

  40. Zhao, Y. R.; Wang, J. Q.; Deng, L.; Zhou, P.; Wang, S. J.; Wang, Y. T.; Xu, H.; Lu, J. R. Tuning the self-assembly of short peptides via sequence variations. Langmuir 2013, 29, 13457–13464.

    Article  CAS  Google Scholar 

  41. Childers, W. S.; Mehta, A. K.; Ni, R.; Taylor, J. V.; Lynn, D. G. Peptides organized as bilayer membranes. Angew. Chem., Int. Ed. 2010, 49, 4104–4107.

    Article  CAS  Google Scholar 

  42. Guo, Q.; Mehta, A. K.; Grover, M. A.; Chen, W.; Lynn, D. G.; Chen, Z. Shape selection and multi-stability in helical ribbons. Appl. Phys. Lett. 2014, 104, 211901.

    Article  Google Scholar 

  43. Li, S.; Mehta, A. K.; Sidorov, A. N.; Orlando, T. M.; Jiang, Z. G.; Anthony, N. R.; Lynn, D. G. Design of asymmetric peptide bilayer membranes. J. Am. Chem. Soc. 2016, 138, 3579–3586.

    Article  CAS  Google Scholar 

  44. Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; Mcree, D. E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993, 366, 324–327.

    Article  CAS  Google Scholar 

  45. Chen, K. H.; Corro, K. A.; Le, S. P.; Nowick, J. S. X-ray crystallographic structure of a giant double-walled peptide nanotube formed by a macrocyclic β-sheet containing Aβ16–22. J. Am. Chem. Soc. 2017, 139, 8102–8105.

    Article  CAS  Google Scholar 

  46. Thomas, F.; Burgess, N. C.; Thomson, A. R.; Woolfson, D. N. Controlling the assembly of coiled-coil peptide nanotubes. Angew. Chem., Int. Ed. 2016, 55, 987–991.

    Article  CAS  Google Scholar 

  47. Xu, C. F.; Liu, R.; Mehta, A. K.; Guerrero-Ferreira, R. C.; Wright, E. R.; Dunin-Horkawicz, S.; Morris, K.; Serpell, L. C.; Zuo, X. B.; Wall, J. S. et al. Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J. Am. Chem. Soc. 2013, 135, 15565–15578.

    Article  CAS  Google Scholar 

  48. Wu, D. D.; Sinha, N.; Lee, J.; Sutherland, B. P.; Halaszynski, N. I.; Tian, Y.; Caplan, J.; Zhang, H. V.; Saven, J. G.; Kloxin, C. J. et al. Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature 2019, 574, 658–662.

    Article  CAS  Google Scholar 

  49. Woolfson, D. N. Coiled-coil design: Updated and upgraded. In Fibrous Proteins: Structures and Mechanisms; Parry, D. A. D.; Squire, J. M., Eds.; Springer: Cham, 2017; pp 35–61.

    Chapter  Google Scholar 

  50. Jiang, T.; Xu, C. F.; Liu, Y.; Liu, Z.; Wall, J. S.; Zuo, X. B.; Lian, T. Q.; Salaita, K.; Ni, C. Y.; Pochan, D. et al. Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J. Am. Chem. Soc. 2014, 136, 4300–4308.

    Article  CAS  Google Scholar 

  51. Nam, K. T.; Shelby, S. A.; Choi, P. H.; Marciel, A. B.; Chen, R.; Tan, L.; Chu, T. K.; Mesch, R. A.; Lee, B. C.; Connolly, M. D. et al. Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat. Mater. 2010, 9, 454–460.

    Article  CAS  Google Scholar 

  52. Hamley, I. W.; Hutchinson, J.; Kirkham, S.; Castelletto, V.; Kaur, A.; Reza, M.; Ruokolainen, J. Nanosheet formation by an anionic surfactant-like peptide and modulation of self-assembly through ionic complexation. Langmuir 2016, 32, 10387–10393.

    Article  CAS  Google Scholar 

  53. Zhang, H. V.; Polzer, F.; Haider, M. J.; Tian, Y.; Villegas, J. A.; Kiick, K. L.; Pochan, D. J.; Saven, J. G. Computationally designed peptides for self-assembly of nanostructured lattices. Sci. Adv. 2016, 2, e1600307.

    Article  Google Scholar 

  54. Yu, Z. L.; Tantakitti, F.; Palmer, L. C.; Stupp, S. I. Asymmetric peptide nanoribbons. Nano. Lett. 2016, 16, 6967–6974.

    Article  CAS  Google Scholar 

  55. Magnotti, E. L.; Hughes, S. A.; Dillard, R. S.; Wang, S. Y.; Hough, L.; Karumbamkandathil, A.; Lian, T. Q.; Wall, J. S.; Zuo, X. B.; Wright, E. R. et al. Self-assembly of an α-helical peptide into a crystalline two-dimensional nanoporous framework. J. Am. Chem. Soc. 2016, 138, 16274–16282.

    Article  CAS  Google Scholar 

  56. Lin, Y. Y.; Thomas, M. R.; Gelmi, A.; Leonardo, V.; Pashuck, E. T.; Maynard, S. A.; Wang, Y.; Stevens, M. M. Self-assembled 2D free-standing janus nanosheets with single-layer thickness. J. Am. Chem. Soc. 2017, 139, 13592–13595.

    Article  CAS  Google Scholar 

  57. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Supramolecular materials: Self-organized nanostructures. Science 1997, 276, 384–389.

    Article  CAS  Google Scholar 

  58. Besenius, P.; Portale, G.; Bomans, P. H. H.; Janssen, H. M.; Palmans, A. R. A.; Meijer, E. W. Controlling the growth and shape of chiral supramolecular polymers in water. Proc. Natl. Acad. Sci. USA 2010, 107, 17888–17893.

    Article  CAS  Google Scholar 

  59. Dong, H.; Paramonov, S. E.; Aulisa, L.; Bakota, E. L.; Hartgerink, J. D. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure. J. Am. Chem. Soc. 2007, 129, 12468–12472.

    Article  CAS  Google Scholar 

  60. Appel, R.; Fuchs, J.; Tyrrell, S. M.; Korevaar, P. A.; Stuart, M. C. A.; Voets, I. K.; Schönhoff, M.; Besenius, P. Steric constraints induced frustrated growth of supramolecular nanorods in water. Chem.—Eur. J. 2015, 21, 19257–19264.

    Article  CAS  Google Scholar 

  61. Su, H.; Wang, F. H.; Wang, H.; Zhang, W. J.; Anderson, C. F.; Cui, H. G. Propagation-instigated self-limiting polymerization of multiarmed amphiphiles into finite supramolecular polymers. J. Am. Chem. Soc. 2021, 143, 18446–18453.

    Article  CAS  Google Scholar 

  62. Jiang, T.; Xu, C. F.; Zuo, X. B.; Conticello, V. P. Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew. Chem., Int. Ed. 2014, 53, 8367–8371.

    Article  CAS  Google Scholar 

  63. Merg, A. D.; Touponse, G.; van Genderen, E.; Zuo, X. B.; Bazrafshan, A.; Blum, T.; Hughes, S.; Salaita, K.; Abrahams, J. P.; Conticello, V. P. 2D crystal engineering of nanosheets assembled from helical peptide building blocks. Angew. Chem., Int. Ed. 2019, 58, 13507–13512.

    Article  CAS  Google Scholar 

  64. Bull, S. R.; Palmer, L. C.; Fry, N. J.; Greenfield, M. A.; Messmore, B. W.; Meade, T. J.; Stupp, S. I. A templating approach for monodisperse self-assembled organic nanostructures. J. Am. Chem. Soc. 2008, 130, 2742–2743.

    Article  CAS  Google Scholar 

  65. Ruff, Y.; Moyer, T.; Newcomb, C. J.; Demeler, B.; Stupp, S. I. Precision templating with DNA of a virus-like particle with peptide nanostructures. J. Am. Chem. Soc. 2013, 135, 6211–6219.

    Article  CAS  Google Scholar 

  66. Stubbs, G.; Warren, S.; Holmes, K. Structure of RNA and RNA binding site in tobacco mosaic virus from 4-Å map calculated from X-ray fibre diagrams. Nature 1977, 267, 216–221.

    Article  CAS  Google Scholar 

  67. Hernandez-Garcia, A.; Kraft, D. J.; Janssen, A. F. J.; Bomans, P. H. H.; Sommerdijk, N. A. J. M.; Thies-Weesie, D. M. E.; Favretto, M. E.; Brock, R.; de Wolf, F. A.; Werten, M. W. T. et al. Design and self-assembly of simple coat proteins for artificial viruses. Nat. Nanotechnol. 2014, 9, 698–702.

    Article  CAS  Google Scholar 

  68. Lourenço, T. C.; de Mello, L. R.; Icimoto, M. Y.; Bicev, R. N.; Hamley, I. W.; Castelletto, V.; Nakaie, C. R.; da Silva, E. R. DNA-templated self-assembly of bradykinin into bioactive nanofibrils. Soft Matter, in press, https://doi.org/10.1039/d3sm00431g.

  69. Ni, R.; Chau, Y. Structural mimics of viruses through peptide/DNA co-assembly. J. Am. Chem. Soc. 2014, 136, 17902–17905.

    Article  CAS  Google Scholar 

  70. Ni, R.; Chau, Y. Tuning the inter-nanofibril interaction to regulate the morphology and function of peptide/DNA Co-assembled viral mimics. Angew. Chem., Int. Ed. 2017, 56, 9356–9360.

    Article  CAS  Google Scholar 

  71. Lin, B. F.; Marullo, R. S.; Robb, M. J.; Krogstad, D. V.; Antoni, P.; Hawker, C. J.; Campos, L. M.; Tirrell, M. V. De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide amphiphile assembly. Nano Lett. 2011, 11, 3946–3950.

    Article  CAS  Google Scholar 

  72. Grigoryan, G.; Kim, Y. H.; Acharya, R.; Axelrod, K.; Jain, R. M.; Willis, L.; Drndic, M.; Kikkawa, J. M.; DeGrado, W. F. Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 2011, 332, 1071–1076.

    Article  CAS  Google Scholar 

  73. Chen, C.; Daniel, M. C.; Quinkert, Z. T.; De, M.; Stein, B.; Bowman, V. D.; Chipman, P. R.; Rotello, V. M.; Kao, C. C.; Dragnea, B. Nanoparticle-templated assembly of viral protein cages. Nano Lett. 2006, 6, 611–615.

    Article  CAS  Google Scholar 

  74. Sun, J. C.; DuFort, C.; Daniel, M. C.; Murali, A.; Chen, C.; Gopinath, K.; Stein, B.; De, M.; Rotello, V. M.; Holzenburg, A. et al. Core-controlled polymorphism in virus-like particles. Proc. Natl. Acad. Sci. USA 2007, 104, 1354–1359.

    Article  CAS  Google Scholar 

  75. Villegas, J. A.; Sinha, N. J.; Teramoto, N.; Von Bargen, C. D.; Pochan, D. J.; Saven, J. G. Computational design of single-peptide nanocages with nanoparticle templating. Molecules 2022, 27, 1237.

    Article  CAS  Google Scholar 

  76. Porrata, P.; Goun, E.; Matsui, H. Size-controlled self-assembly of peptide nanotubes using polycarbonate membranes as templates. Chem. Mater. 2002, 14, 4378–4381.

    Article  CAS  Google Scholar 

  77. Woolfson, D. N.; Mahmoud, Z. N. More than just bare scaffolds: Towards multi-component and decorated fibrous biomaterials. Chem. Soc. Rev. 2010, 39, 3464–3479.

    Article  CAS  Google Scholar 

  78. Collier, J. H.; Rudra, J. S.; Gasiorowski, J. Z.; Jung, J. P. Multi-component extracellular matrices based on peptide self-assembly. Chem. Soc. Rev. 2010, 39, 3413–3424.

    Article  CAS  Google Scholar 

  79. Raymond, D. M.; Nilsson, B. L. Multicomponent peptide assemblies. Chem. Soc. Rev. 2018, 47, 3659–3720.

    Article  CAS  Google Scholar 

  80. Okesola, B. O.; Mata, A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 2018, 47, 3721–3736.

    Article  CAS  Google Scholar 

  81. Adler-Abramovich, L.; Marco, P.; Amon, Z. A.; Creasey, R. C. G.; Michaels, T. C. T.; Levin, A.; Scurr, D. J.; Roberts, C. J.; Knowles, T. P. J.; Tendler, S. J. B. et al. Controlling the physical dimensions of peptide nanotubes by supramolecular polymer coassembly. ACS Nano 2016, 10, 7436–7442.

    Article  CAS  Google Scholar 

  82. Ueda, M.; Makino, A.; Imai, T.; Sugiyama, J.; Kimura, S. Rational design of peptide nanotubes for varying diameters and lengths. J. Pept. Sci. 2011, 17, 94–99.

    Article  CAS  Google Scholar 

  83. Aluri, S.; Pastuszka, M. K.; Moses, A. S.; MacKay, J. A. Elastin-like peptide amphiphiles form nanofibers with tunable length. Biomacromolecules 2012, 13, 2645–2654.

    Article  CAS  Google Scholar 

  84. Zheng, J.; Liu, C.; Sawaya, M. R.; Vadla, B.; Khan, S.; Woods, R. J.; Eisenberg, D.; Goux, W. J.; Nowick, J. S. Macrocyclic β-sheet peptides that inhibit the aggregation of a tau-protein-derived hexapeptide. J. Am. Chem. Soc. 2011, 133, 3144–3157.

    Article  CAS  Google Scholar 

  85. Bromley, E. H. C.; Sessions, R. B.; Thomson, A. R.; Woolfson, D. N. Designed α-helical tectons for constructing multicomponent synthetic biological systems. J. Am. Chem. Soc. 2009, 131, 928–930.

    Article  CAS  Google Scholar 

  86. Cheng, D.; Chen, X.; Zhang, W. J.; Guo, P.; Xue, W. H.; Xia, J. F.; Wu, S. Y.; Shi, J. H.; Ma, D.; Zuo, X. B. et al. Design of multicomponent peptide fibrils with ordered and programmable compositional patterns. Angew. Chem., Int. Ed. 2023, 62, e202303684.

    Article  CAS  Google Scholar 

  87. Lumb, K. J.; Kim, P. S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 1995, 34, 8642–8648.

    Article  CAS  Google Scholar 

  88. Dong, H.; Hartgerink, J. D. Short homodimeric and heterodimeric coiled coils. Biomacromolecules 2006, 7, 691–695.

    Article  CAS  Google Scholar 

  89. Mason, J. M.; Schmitz, M. A.; Müller, K.; Arndt, K. M. Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. Proc. Natl. Acad. Sci. USA 2006, 103, 8989–8994.

    Article  CAS  Google Scholar 

  90. Reinke, A. W.; Grant, R. A.; Keating, A. E. A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J. Am. Chem. Soc. 2010, 132, 6025–6031.

    Article  CAS  Google Scholar 

  91. Gradišar, H.; Jerala, R. De novo design of orthogonal peptide pairs forming parallel coiled-coil heterodimers. J. Pept. Sci. 2011, 17, 100–106.

    Article  Google Scholar 

  92. Gradišar, H.; Bošič, S.; Doles, T.; Vengust, D.; Hafner-Bratkovič, I.; Mertelj, A.; Webb, B.; šali, A.; Klavžar, S.; Jerala, R. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat. Chem. Biol. 2013, 9, 362–366.

    Article  Google Scholar 

  93. Crooks, R. O.; Baxter, D.; Panek, A. S.; Lubben, A. T.; Mason, J. M. Deriving heterospecific self-assembling protein–protein interactions using a computational interactome screen. J. Mol. Biol. 2016, 428, 385–398.

    Article  CAS  Google Scholar 

  94. Wang, F. B.; Gnewou, O.; Solemanifar, A.; Conticello, V. P.; Egelman, E. H. Cryo-EM of helical polymers. Chem. Rev. 2022, 122, 14055–14065.

    Article  CAS  Google Scholar 

  95. Miller, J. G.; Hughes, S. A.; Modlin, C.; Conticello, V. P. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Quart. Rev. Biophys. 2022, 55, e2.

    Article  CAS  Google Scholar 

  96. Huang, P. S.; Oberdorfer, G.; Xu, C. F.; Pei, X. Y.; Nannenga, B. L.; Rogers, J. M.; DiMaio, F.; Gonen, T.; Luisi, B.; Baker, D. High thermodynamic stability of parametrically designed helical bundles. Science 2014, 346, 481–485.

    Article  CAS  Google Scholar 

  97. Thomson, A. R.; Wood, C. W.; Burton, A. J.; Bartlett, G. J.; Sessions, R. B.; Brady, R. L.; Woolfson, D. N. Computational design of water-soluble α-helical barrels. Science 2014, 346, 485–488.

    Article  CAS  Google Scholar 

  98. Chen, Z. B.; Boyken, S. E.; Jia, M. X.; Busch, F.; Flores-Solis, D.; Bick, M. J.; Lu, P. L.; VanAernum, Z. L.; Sahasrabuddhe, A.; Langan, R. A. et al. Programmable design of orthogonal protein heterodimers. Nature 2019, 565, 106–111.

    Article  CAS  Google Scholar 

  99. Batra, R.; Loeffler, T. D.; Chan, H.; Srinivasan, S.; Cui, H. G.; Korendovych, I. V.; Nanda, V.; Palmer, L. C.; Solomon, L. A.; Fry, H. C. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 2022, 14, 1427–1435.

    Article  CAS  Google Scholar 

  100. Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003, 301, 1882–1884.

    Article  CAS  Google Scholar 

  101. Ghosh, P. S.; Hamilton, A. D. Noncovalent template-assisted mimicry of multiloop protein surfaces: Assembling discontinuous and functional domains. J. Am. Chem. Soc. 2012, 134, 13208–13211.

    Article  CAS  Google Scholar 

  102. Wang, D. B.; Capehart, S. L.; Pal, S.; Liu, M. H.; Zhang, L.; Schuck, P. J.; Liu, Y.; Yan, H.; Francis, M. B.; De Yoreo, J. J. Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates. ACS Nano 2014, 8, 7896–7904.

    Article  CAS  Google Scholar 

  103. Udomprasert, A.; Bongiovanni, M. N.; Sha, R. J.; Sherman, W. B.; Wang, T.; Arora, P. S.; Canary, J. W.; Gras, S. L.; Seeman, N. C. Amyloid fibrils nucleated and organized by DNA origami constructions. Nat. Nanotechnol. 2014, 9, 537–541.

    Article  CAS  Google Scholar 

  104. Jiang, T.; Meyer, T. A.; Modlin, C.; Zuo, X. B.; Conticello, V. P.; Ke, Y. G. Structurally ordered nanowire formation from co-assembly of DNA origami and collagen-mimetic peptides. J. Am. Chem. Soc. 2017, 139, 14025–14028.

    Article  CAS  Google Scholar 

  105. Jin, J.; Baker, E. G.; Wood, C. W.; Bath, J.; Woolfson, D. N.; Turberfield, A. J. Peptide assembly directed and quantified using megadalton DNA nanostructures. ACS Nano 2019, 13, 9927–9935.

    Article  CAS  Google Scholar 

  106. Buchberger, A.; Simmons, C. R.; Fahmi, N. E.; Freeman, R.; Stephanopoulos, N. Hierarchical assembly of nucleic acid/coiled-coil peptide nanostructures. J. Am. Chem. Soc. 2020, 142, 1406–1416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 22074128 and 22241503) and Fundamental Research Funds for the Central Universities (Nos. 20720210013 and 20720220005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincent P. Conticello or Tao Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Jia, F., Jiang, YB. et al. Assembly of peptide nanostructures with controllable sizes. Nano Res. 17, 151–161 (2024). https://doi.org/10.1007/s12274-023-5970-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5970-x

Keywords

Navigation