Skip to main content
Log in

Graphene-coated conductive probes with enhanced sensitivity for nanoIR spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nano-infrared (nanoIR) probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission, and their testing performance is critically dependent on their optical properties and structural stability. Graphene-coated dielectric probes are highly attractive for enhancing light–matter interactions and integrating IR photonics, providing a broadband optical response and strong electromagnetic field. However, achieving continuous single-layer graphene growth on non-planar and non-single crystalline dielectrics is a significant challenge due to the low surface energy of the dielectric and the large difference in size between the probe tip, cantilever, and substrate. Herein, we present a novel method for the growth of high-quality and continuous graphene with good conductivity on non-planar and amorphous dielectric probe surfaces using manganese oxide powder-assisted short time heating chemical vapor deposition. The resulting graphene-coated dielectric probes exhibit an average IR reflectance of only 5% in the mid-IR band, significantly outperforming probes without continuous graphene coating. Such probes can not only effectively transduce the local photothermal sample expansion caused by the absorption of IR laser pulses, but also effectively scatter near-field light, which is 25 times stronger than the commercial metal-coated probes, and have advantages in the application of nanoIR sensing based on atomic force microscope-based infrared (AFM-IR) spectroscopy and infrared scattering scanning near field optical microscopy (IR s-SNOM) principles. Furthermore, our graphene growth method provides a solution for growing high-quality graphene on the surfaces of non-planar dielectric materials required for integrated circuits and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dazzi, A.; Prater, C. B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146–5173.

    Article  CAS  Google Scholar 

  2. Wang, H. L.; You, E. M.; Panneerselvam, R.; Ding, S. Y.; Tian, Z. Q. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light Sci. Appl. 2021, 10, 161.

    Article  CAS  Google Scholar 

  3. Rao, V. J.; Matthiesen, M.; Goetz, K. P.; Huck, C.; Yim, C.; Siris, R.; Han, J.; Hahn, S.; Bunz, U. H. F.; Dreuw, A.; et al. AFM-IR and IR-SNOM for the characterization of small molecule organic semiconductors. J. Phys. Chem. C 2020, 124, 5331–5344.

    Article  CAS  Google Scholar 

  4. Mauser, N. and Hartschuh, A. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev 2014, 43, 1248–1262.

    Article  CAS  Google Scholar 

  5. Moore, S. L.; Ciccarino, C. J.; Halbertal, D.; McGilly, L. J.; Finney, N. R.; Yao, K.; Shao, Y.; Ni, G.; Sternbach, A.; Telford, E. J. et al. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun. 2021, 12, 5741.

    Article  CAS  Google Scholar 

  6. Qi, X. Q.; Lu, Z. H.; You, E. M.; He, Y.; Zhang, Q. E.; Yi, H. J.; Li, D. Y.; Ding, S. Y.; Jiang, Y.; Xiong, X. P. et al. Nanocombing effect leads to nanowire-based, in-plane, uniaxial thin films. ACS Nano 2018, 12, 12701–12712.

    Article  CAS  Google Scholar 

  7. Qin, T. X.; You, E. M.; Zhang, M. X.; Zheng, P.; Huang, X. F.; Ding, S. Y.; Mao, B. W.; Tian, Z. Q. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and kelvin probe force microscopy. Light Sci. Appl. 2021, 10, 84.

    Article  Google Scholar 

  8. You, E. M.; Chen, Y. Q.; Yi, J.; Meng, Z. D.; Chen, Q.; Ding, S. Y.; Duan, H. G.; Moskovits, M.; Tian, Z. Q. Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electron. Adv. 2021, 4, 210076.

    Article  CAS  Google Scholar 

  9. Schwartz, J. J.; Jakob, D. S.; Centrone, A. A guide to nanoscale IR spectroscopy: Resonance enhanced transduction in contact and tapping mode AFM-IR. Chem. Soc. Rev. 2022, 51, 5248–5267.

    Article  CAS  Google Scholar 

  10. Guo, Q. S.; Li, C.; Deng, B. C.; Yuan, S. F.; Guinea, F.; Xia, F. N. Infrared nanophotonics based on graphene plasmonics. ACS Photonics 2017, 4, 2989–2999.

    Article  CAS  Google Scholar 

  11. Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194.

    Article  CAS  Google Scholar 

  12. Maier, S. A. Plasmonics: Fundamentals and Applications; Springer: New York, 2007.

    Book  Google Scholar 

  13. Koppens, F. H. L.; Chang, D. E.; García De Abajo, F. J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 2011, 11, 3370–3377.

    Article  CAS  Google Scholar 

  14. Lu, W. B.; Zhu, W.; Xu, H. J.; Ni, Z. H.; Dong, Z. G.; Cui, T. J. Flexible transformation plasmonics using graphene. Opt. Express 2013, 21, 10475–10482.

    Article  CAS  Google Scholar 

  15. Zhu, B. F.; Ren, G. B.; Gao, Y. X.; Yang, Y.; Lian, Y. D.; Jian, S. S. Graphene-coated tapered nanowire infrared probe: A comparison with metal-coated probes. Opt. Express 2014, 22, 24096–24103.

    Article  CAS  Google Scholar 

  16. Hui, F.; Chen, S. C.; Liang, X. H.; Yuan, B.; Jing, X.; Shi, Y. Y.; Lanza, M. Graphene coated nanoprobes: A review. Crystals 2017, 7, 269.

    Article  Google Scholar 

  17. Hui, F.; Vajha, P.; Shi, Y. Y.; Ji, Y. F.; Duan, H. L.; Padovani, A.; Larcher, L.; Li, X. R.; Xu, J. J.; Lanza, M. Moving graphene devices from lab to market: Advanced graphene-coated nanoprobes. Nanoscale 2016, 8, 8466–8473.

    Article  CAS  Google Scholar 

  18. Lanza, M.; Bayerl, A.; Gao, T.; Porti, M.; Nafria, M.; Jing, G. Y.; Zhang, Y. F.; Liu, Z. F.; Duan, H. L. Graphene-coated atomic force microscope tips for reliable nanoscale electrical characterization. Adv. Mater. 2013, 25, 1440–1444.

    Article  CAS  Google Scholar 

  19. Martin-Olmos, C.; Rasool, H. I.; Weiller, B. H.; Gimzewski, J. K. Graphene MEMS: AFM probe performance improvement. ACS Nano 2013, 7, 4164–4170.

    Article  CAS  Google Scholar 

  20. Wang, Z. W.; Xue, Z. Y.; Zhang, M.; Wang, Y. Q.; Xie, X. M.; Chu, P. K.; Zhou, P.; Di, Z. F.; Wang, X. Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 2017, 13, 1700929.

    Article  Google Scholar 

  21. Khan, A.; Islam, S. M.; Ahmed, S.; Kumar, R. R.; Habib, M. R.; Huang, K.; Hu, M.; Yu, X. G.; Yang, D. R. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 2018, 5, 1800050.

    Article  Google Scholar 

  22. Chen, K.; Zhou, X.; Cheng, X.; Qiao, R. X.; Cheng, Y.; Liu, C.; Xie, Y. D.; Yu, W. T.; Yao, F. R.; Sun, Z. P. et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics 2019, 13, 754–759.

    Article  CAS  Google Scholar 

  23. Xia-Hou, Y. J.; Yu, Y.; Zheng, J. R.; Yi, J.; Zhou, J.; Qin, T. X.; You, E. M.; Chen, H. L.; Ding, S. Y.; Zhang, L. et al. Graphene coated dielectric hierarchical nanostructures for highly sensitive broadband infrared sensing. Small 2023, 19, 2206167.

    Article  CAS  Google Scholar 

  24. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

    Article  CAS  Google Scholar 

  25. Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; McHugh, E. A.; Advincula, P. A. et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651.

    Article  CAS  Google Scholar 

  26. Bachmatiuk, A.; Mendes, R. G.; Hirsch, C.; Jähne, C.; Lohe, M. R.; Grothe, J.; Kaskel, S.; Fu, L.; Klingeler, R.; Eckert, J. et al. Few-layer graphene shells and nonmagnetic encapsulates: A versatile and nontoxic carbon nanomaterial. ACS Nano 2013, 7, 10552–10562.

    Article  CAS  Google Scholar 

  27. Rümmeli, M. H.; Kramberger, C.; Grüneis, A.; Ayala, P.; Gemming, T.; Büchner, B.; Pichler, T. On the graphitization nature of oxides for the formation of carbon nanostructures. Chem. Mater. 2007, 19, 4105–4107.

    Article  Google Scholar 

  28. Zou, Z. Y.; Fu, L.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett. 2014, 14, 3832–3839.

    Article  CAS  Google Scholar 

  29. Chen, K.; Zhang, F.; Sun, J. Y.; Li, Z. Z.; Zhang, L.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Zhang, L. Y.; Rümmeli, M. H. et al. Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Storage Mater. 2018, 12, 110–118.

    Article  Google Scholar 

  30. Cocker, T. L.; Jelic, V.; Hillenbrand, R.; Hegmann, F. A. Nanoscale terahertz scanning probe microscopy. Nat. Photonics 2021, 15, 558–569.

    Article  CAS  Google Scholar 

  31. Li, Z. Q.; Lu, C. J.; Xia, Z. P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695.

    Article  CAS  Google Scholar 

  32. Kumar, R.; Oh, J. H.; Kim, H. J.; Jung, J. H.; Jung, C. H.; Hong, W. G.; Kim, H. J.; Park, J. Y.; Oh, I. K. Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS Nano 2015, 9, 7343–7351.

    Article  CAS  Google Scholar 

  33. Yasuda, A. A new technique using FT-IR micro-reflectance spectroscopy for measurement of water concentrations in melt inclusions. Earth Planets Space 2014, 66, 34.

    Article  Google Scholar 

  34. Azarfar, G.; Aboualizadeh, E.; Walter, N. M.; Ratti, S.; Olivieri, C.; Norici, A.; Nasse, M.; Kohler, A.; Giordano, M.; Hirschmugl, C. J. Estimating and correcting interference fringes in infrared spectra in infrared hyperspectral imaging. Analyst 2018, 143, 4674–4683.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22002127, 22275155, 22272140, 22202162, and 21904112), the Natural Science Foundation of Xiamen, China (No. 3502Z20227008), the Fundamental Research Funds for the Central Universities (No. 20720210016), the Ministry of Science and Technology of China, National Key Research and Development Program of China (No. 2021YFA1201502), the Fundamental Research Funds for the Central Universities (No. 20720220011), and China Postdoctoral Science Foundation (No. 2022M722648).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Peng He, Jun Yi or Hai-Xin Lin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia-Hou, YJ., Li, XC., You, EM. et al. Graphene-coated conductive probes with enhanced sensitivity for nanoIR spectroscopy. Nano Res. 16, 11326–11333 (2023). https://doi.org/10.1007/s12274-023-5934-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5934-1

Keywords

Navigation