Skip to main content
Log in

Structural engineering of BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures towards ultrastable and tunable photoluminescence

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Construction of lead halide perovskite nanocrystals (LHP NCs) heterostructures is essential to obtain highly stable photoluminescence and expand their applications. Herein, a novel self-assembly strategy combining with a solvent-free thermal-assisted synthesis and a water-triggered reaction is developed to subsequently grow BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures at low nucleation temperature with high crystallinity. The as-obtained ternary BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures exhibit remarkably enhanced panchromatic emission and ultrastable luminescence ascribing to the low-defect growth based on lattice matching. Stable white light-emitting diodes (WLEDs) have been constructed with a high correlated color temperature (CCT) of 7225 K and luminous efficiency of 74.4 lm·W−1. Ln3+-doped BaWO4/CsPbX3/CsPb2X5 (Ln3+ = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+) nanocomposites are further designed with excitation-dependent photoluminescence and thermochromic properties, making them excellent candidates for high-level anti-counterfeiting and encryption. This work offers a green and universal approach in assembling CsPbX3 (X = Cl, Br, I) on lattice-matched tungstate with adjustable panchromatic emission for versatile optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

    Article  CAS  Google Scholar 

  2. Wang, H. R.; Zhang, X. Y.; Wu, Q. Q.; Cao, F.; Yang, D. W.; Shang, Y. Q.; Ning, Z. J.; Zhang, W.; Zheng, W. T.; Yan, Y. F. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 2019, 10, 665.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Cao, F. R.; Li, L. Progress of lead-free halide perovskites: From material synthesis to photodetector application. Adv. Funct. Mater. 2021, 31, 2008275.

    Article  CAS  Google Scholar 

  4. Xu, L. M.; Chen, J. W.; Song, J. Z.; Li, J. H.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N.; Zeng, H. B. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes. ACS Appl. Mater. Interfaces 2017, 9, 26556–26564.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, Y. Y.; Zhao, Y. X. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 2019, 12, 1495–1511.

    Article  CAS  Google Scholar 

  6. Fakharuddin, A.; Shabbir, U.; Qiu, W. M.; Iqbal, T.; Sultan, M.; Heremans, P.; Schmidt-Mende, L. Inorganic and layered perovskites for optoelectronic devices. Adv. Mater. 2019, 31, 1807095.

    Article  CAS  Google Scholar 

  7. Feng, P. F.; Yang, X. X.; Feng, X. X.; Zhao, G. D.; Li, X. C.; Cao, J.; Tang, Y.; Yan, C. H. Highly stable perovskite quantum dots modified by europium complex for dual-responsive optical encoding. ACS Nano 2021, 15, 6266–6275.

    Article  CAS  PubMed  Google Scholar 

  8. Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zhang, Q. G.; Wang, B.; Zheng, W. L.; Kong, L.; Wan, Q.; Zhang, C. Y.; Li, Z. C.; Cao, X. Y.; Liu, M. M.; Li, L. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat. Commun. 2020, 11, 31.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Hou, J. W.; Wang, Z. L.; Chen, P.; Chen, V.; Cheetham, A. K.; Wang, L. Z. Intermarriage of halide perovskites and metal-organic framework crystals. Angew. Chem., Int. Ed. 2020, 59, 19434–19449.

    Article  CAS  Google Scholar 

  11. Song, W. T.; Wang, D. D.; Tian, J. W.; Qi, G. B.; Wu, M.; Liu, S. T.; Wang, T. T.; Wang, B.; Yao, Y. F.; Zou, Z. G. et al. Encapsulation of dual-passivated perovskite quantum dots for bio-imaging. Small 2022, 18, 2204763.

    Article  CAS  Google Scholar 

  12. Lv, W. Z.; Li, L.; Xu, M. C.; Hong, J. X.; Tang, X. X.; Xu, L. G.; Wu, Y. H.; Zhu, R.; Chen, R. F.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 2019, 31, 1900682.

    Article  Google Scholar 

  13. Dirin, D. N.; Benin, B. M.; Yakunin, S.; Krumeich, F.; Raino, G.; Frison, R.; Kovalenko, M. V. Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals. ACS Nano 2019, 13, 11642–11652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruan, L. F.; Zhang, Y. NIR-excitable heterostructured upconversion perovskite nanodots with improved stability. Nat. Commun. 2021, 12, 219.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Q.; Song, Y. H.; Hao, J. M.; Lan, Y. F.; Feng, L. Z.; Ru, X. C.; Wang, J. J.; Song, K. H.; Yang, J. N.; Chen, T. et al. α-BaF2 nanoparticle substrate-enabled γ-CsPbI3 heteroepitaxial growth for efficient and bright deep-red light-emitting diodes. J. Am. Chem. Soc. 2022, 144, 8162–8170.

    Article  CAS  PubMed  Google Scholar 

  17. Imran, M.; Peng, L. C.; Pianetti, A.; Pinchetti, V.; Ramade, J.; Zito, J.; Di Stasio, F.; Buha, J.; Toso, S.; Song, J. et al. Halide perovskite-lead chalcohalide nanocrystal heterostructures. J. Am. Chem. Soc. 2021, 143, 1435–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei, Y.; Li, K.; Cheng, Z. Y.; Liu, M. M.; Xiao, H.; Dang, P. P.; Liang, S. S.; Wu, Z. J.; Lian, H. Z.; Lin, J. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: A novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability. Adv. Mater. 2019, 31, 1807592.

    Article  Google Scholar 

  19. Khan, W. U.; Zhou, P.; Qin, L. Y.; Alam, A.; Ge, Z. J.; Wang, Y. H. Solvent-free synthesis of nitrogen doped carbon dots with dual emission and their biological and sensing applications. Mater. Today Nano 2022, 18, 100205.

    Article  CAS  Google Scholar 

  20. Liu, J. Q.; Pei, L.; Xia, Z. G.; Xu, Y. Hierarchical accordion-like lanthanide-based metal-organic frameworks: Solvent-free syntheses and ratiometric luminescence temperature-sensing properties. Cryst. Growth Des. 2019, 19, 6586–6591.

    Article  CAS  Google Scholar 

  21. Xu, L. F.; Liu, J. Q.; Pei, L.; Xu, Y.; Xia, Z. G. Enhanced up-conversion luminescence and optical temperature sensing in graphitic C3N4 quantum dots grafted with BaWO4: Yb3+, Er3+ phosphors. J. Mater. Chem. C 2019, 7, 6112–6119.

    Article  CAS  Google Scholar 

  22. Jana, A.; Mittal, M.; Singla, A.; Sapra, S. Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanoparticles. Chem. Commun. 2017, 53, 3046–3049.

    Article  CAS  Google Scholar 

  23. Lou, S. Q.; Zhou, Z.; Xuan, T. T.; Li, H. L.; Jiao, J.; Zhang, H. W.; Gautier, R.; Wang, J. Chemical transformation of lead halide perovskite into insoluble, less cytotoxic, and brightly luminescent CsPbBr3/CsPb2Br5 composite nanocrystals for cell imaging. ACS Appl. Mater. Interfaces 2019, 11, 24241–24246.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, L.; Ma, D. C.; Guo, C.; Jiang, X.; Li, M. L.; Xu, T. T.; Zhu, J. P.; Fan, B. B.; Liu, W.; Shao, G. et al. CsPbBr3 nanocrystals prepared by high energy ball milling in one-step and structural transformation from CsPbBr3 to CsPb2Br5. Appl. Surf. Sci. 2021, 543, 148782.

    Article  CAS  Google Scholar 

  25. Zhong, Q. X.; Liu, J.; Chen, S. H.; Li, P. L.; Chen, J. N.; Guan, W. H.; Qiu, Y. H.; Xu, Y.; Cao, M. H.; Zhang, Q. Highly stable CsPbX3/PbSO4 core/shell nanocrystals synthesized by a simple post-treatment strategy. Adv. Opt. Mater. 2021, 9, 2001763.

    Article  CAS  Google Scholar 

  26. Li, W.; Zhan, J.; Liu, X. R.; Tang, J. F.; Yin, W. J.; Prezhdo, O. V. Atomistic mechanism of passivation of halide vacancies in lead halide perovskites by alkali ions. Chem. Mater. 2021, 33, 1285–1292.

    Article  CAS  Google Scholar 

  27. Huang, Z. P.; Ma, B.; Wang, H.; Li, N.; Liu, R. T.; Zhang, Z. Q.; Zhang, X. D.; Zhao, J. H.; Zheng, P. Z.; Wang, Q. et al. In situ growth of 3D/2D (CsPbBr3/CsPb2Br5) perovskite heterojunctions toward optoelectronic devices. J. Phys. Chem. Lett. 2020, 11, 6007–6015.

    Article  CAS  PubMed  Google Scholar 

  28. Tang, X. S.; Yang, J.; Li, S. Q.; Liu, Z. Z.; Hu, Z. P.; Hao, J. Y.; Du, J.; Leng, Y. X.; Qin, H. Y.; Lin, X. et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties. Adv. Sci. 2019, 6, 1900412.

    Article  CAS  Google Scholar 

  29. Jiang, G. C.; Guhrenz, C.; Kirch, A.; Sonntag, L.; Bauer, C.; Fan, X. L.; Wang, J.; Reineke, S.; Gaponik, N.; Eychmuller, A. Highly luminescent and water-resistant CsPbBr3-CsPb2Br5 perovskite nanocrystals coordinated with partially hydrolyzed poly(methyl methacrylate) and polyethylenimine. ACS Nano 2019, 13, 10386–10396.

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda, Y.; Sanada, N.; Suzuki, Y.; Goto, T.; Nagoshi, M.; Syono, Y.; Tachiki, M. Core-level electronic states of the YBa2Cu3OyBrx superconductor studied by X-ray photoelectron spectroscopy. Phys. Rev. B 1993, 47, 418–421.

    Article  ADS  CAS  Google Scholar 

  31. Yue, D.; Chen, D.; Lu, W.; Wang, M. N.; Zhang, X. L.; Wang, Z. L.; Qian, G. D. Enhanced photocatalytic performance and morphology evolvement of PbWO4 dendritic nanostructures through Eu3+ doping. RSC Adv. 2016, 6, 81447–81453.

    Article  ADS  CAS  Google Scholar 

  32. Taru Chanu, T. T.; Singh, N. R. Influence of Sm3+ concentration on structural and spectroscopic properties of orange-red emitting PbWO4 phosphor: An energy transfer study. J. Solid State Chem. 2020, 284, 121190.

    Article  CAS  Google Scholar 

  33. Kim, J. Y.; Shim, K. I.; Han, J. W.; Joo, J.; Heo, N. H.; Seff, K. Quantum dots of [Na4Cs6PbBr4]8+, water stable in zeolite X, luminesce sharply in the green. Adv. Mater. 2020, 32, 2001868.

    Article  CAS  Google Scholar 

  34. Liu, J.; Zhong, Q. X.; Chen, S. H.; Guan, W. H.; Qiu, Y. H.; Yang, D.; Cao, M. H.; Zhang, Q. One-pot reprecipitation strategy to synthesize CsPbX3/Pb3(PO4)2 composite nanocrystals. J. Mater. Chem. C 2021, 9, 466–471.

    Article  CAS  Google Scholar 

  35. Wang, Y. D.; Yang, X. Y.; Yu, X. P.; Duan, J. L.; Yang, Q. M.; Duan, Y. Y.; Tang, Q. W. Triboelectric charging behaviors and photoinduced enhancement of alkaline earth ions doped inorganic perovskite triboelectric nanogenerators. Nano Energy 2020, 77, 105280.

    Article  CAS  Google Scholar 

  36. Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595–4600.

    Article  CAS  Google Scholar 

  37. Osherov, A.; Feldman, Y.; Kaplan-Ashiri, I.; Cahen, D.; Hodes, G. Halide diffusion in MAPbX3: Limits to topotaxy for halide exchange in perovskites. Chem. Mater. 2020, 32, 4223–4231.

    Article  CAS  Google Scholar 

  38. Ruan, L. F.; Lin, J.; Shen, W.; Deng, Z. T. Ligand-mediated synthesis of compositionally related cesium lead halide CsPb2X5 nanowires with improved stability. Nanoscale 2018, 10, 7658–7665.

    Article  CAS  PubMed  Google Scholar 

  39. Bao, S.; Yu, H. Y.; Gao, G. Y.; Zhu, H. Y.; Wang, D. S.; Zhu, P. F.; Wang, G. F. Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Res. 2022, 15, 3594–3605.

    Article  ADS  CAS  Google Scholar 

  40. Zhang, F. Y.; Hu, D. H.; Su, X. L.; Hong, Z. D.; Feng, W.; Xu, M.; Li, F. Y. Two birds with one stone: Amine-functionalized MSNs@Eu(OH)CO3 nanoprobe for efficient dissolution-enhanced afterglow bioassay. Nano Res. 2022, 15, 8360–8366.

    Article  ADS  CAS  Google Scholar 

  41. Song, P. J.; Qiao, B.; Song, D. D.; Cao, J. Y.; Shen, Z. H.; Xu, Z.; Zhao, S. L.; Wageh, S.; Al-Ghamdi, A. Modifying the crystal field of CsPbCl3: Mn2+ nanocrystals by co-doping to enhance its red emission by a hundredfold. ACS Appl. Mater. Interfaces 2020, 12, 30711–30719.

    Article  CAS  PubMed  Google Scholar 

  42. Li, K.; Liu, X. M.; Zhang, Y.; Li, X. J.; Lian, H. Z.; Lin, J. Host-sensitized luminescence properties in CaNb2O6:Ln3+ (Ln3+ = Eu3+/Tb3+/Dy3+/Sm3+) phosphors with abundant colors. Inorg. Chem. 2015, 54, 323–333.

    Article  CAS  PubMed  Google Scholar 

  43. Dewangan, P.; Bisen, D. P.; Brahme, N.; Sharma, S.; Tamrakar, R. K.; Sahu, I. P.; Upadhyay, K. Influence of Dy3+ concentration on spectroscopic behaviour of Sr3MgSi2O8:Dy3+ phosphors. J. Alloys Compd. 2020, 816, 152590.

    Article  CAS  Google Scholar 

  44. Ouertani, G.; Ferhi, M.; Horchani-Naifer, K.; Ferid, M. Effect of Sm3+ concentration and excitation wavelength on spectroscopic properties of GdPO4:Sm3+ phosphor. J. Alloys Compd. 2021, 885, 161178.

    Article  CAS  Google Scholar 

  45. Pan, G. C.; Bai, X.; Yang, D. W.; Chen, X.; Jing, P. T.; Qu, S. N.; Zhang, L. J.; Zhou, D. L.; Zhu, J. Y.; Xu, W. et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett. 2017, 17, 8005–8011.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 22171040, 51932009 and 52172166), the Fundamental Research Funds for the Central Universities, China (No. N2105006). The authors are grateful to Maxim S. Molokeev from Federal Research Center KSC SB RAS for his help on discussion of lattice-matched epitaxial growth mechanism.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Jun Lin.

Electronic Supplementary Material

12274_2023_5922_MOESM1_ESM.pdf

Structural engineering of BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures towards ultrastable and tunable photoluminescence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Xu, Y., Li, B. et al. Structural engineering of BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures towards ultrastable and tunable photoluminescence. Nano Res. 17, 1636–1645 (2024). https://doi.org/10.1007/s12274-023-5922-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5922-5

Keywords

Navigation