Skip to main content
Log in

Ferric iron coordinated cisplatin prodrug reprograms the immune-cold tumor microenvironment through tumor hypoxia relief for enhanced cancer photodynamic-immunotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The microenvironment of hypoxia and immune-cold limits the therapeutic outcomes of immune checkpoint blockade (ICB) therapy in solid tumors. It is important and imperative to search new strategies to relieve tumor hypoxia and reverse immunosuppression of cold tumors. In this study, the oxygen (O2) self-replenishing nano-enabled coordination platform can be used to induce potent antitumor immune response in cold tumors. The nanoplatform can produce O2 by catalyzing hydrogen peroxide (H2O2) in tumor site effectively, showing excellent photodynamic therapy (PDT) performance. Meanwhile, it can further trigger immunogenic cell death (ICD), enhance T cell infiltration, reverse immunosuppression, and reprogram the immune-cold tumor microenvironment. In vitro and in vivo results demonstrate that the nanoplatform has potential for eradicating tumors and long-term immunological memory effect. The nanoplatform opens up a strategy for reprograming the immunosuppressive microenvironment in cold tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chowell, D.; Yoo, S. K.; Valero, C.; Pasture, A.; Krishna, C.; Lee, M.; Hoen, D.; Shi, H. Y.; Kelly, D. W.; Patel, N. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. 2022, 40, 499–506.

    CAS  Google Scholar 

  2. Huang, A. C.; Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol. 2022, 23, 660–670.

    CAS  Google Scholar 

  3. Anagnostou, V.; Bardelli, A.; Chan, T. A.; Turajlic, S. The status of tumor mutational burden and immunotherapy. Nat. Cancer 2022, 3, 652–656.

    Google Scholar 

  4. de Miguel, M.; Calvo, E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 2020, 38, 326–333.

    CAS  Google Scholar 

  5. Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39.

    CAS  Google Scholar 

  6. Li, L.; Li, Y. C.; Yang, C. H.; Radford, D. C.; Wang, J. W.; Janât-Amsbury, M.; Kopeček, J.; Yang, J. Y. Inhibition of immunosuppressive tumors by polymer-assisted inductions of immunogenic cell death and multivalent PD-L1 crosslinking. Adv. Funct. Mater. 2020, 30, 1908961.

    CAS  Google Scholar 

  7. Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218.

    CAS  Google Scholar 

  8. Yang, Z.; Gao, D.; Guo, X. Q.; Jin, L.; Zheng, J. J.; Wang, Y.; Chen, S. J.; Zheng, X. W.; Zeng, L.; Guo, M. et al. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 2020, 14, 17442–17457.

    CAS  Google Scholar 

  9. Li, Y. H.; Liu, X. H.; Zhang, X.; Pan, W.; Li, N.; Tang, B. Immune cycle-based strategies for cancer immunotherapy. Adv. Funct. Mater. 2021, 31, 2107540.

    CAS  Google Scholar 

  10. Haanen, J. B. A. G. Converting cold into hot tumors by combining immunotherapies. Cell 2017, 170, 1055–1056.

    CAS  Google Scholar 

  11. Chen, G. J.; Chen, Z. T.; Wen, D.; Wang, Z. J.; Li, H. J.; Zeng, Y.; Dotti, G.; Wirz, R. E.; Gu, Z. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. USA 2020, 117, 3687–3692.

    CAS  Google Scholar 

  12. Wang, C.; Wang, J. Q.; Zhang, X. D.; Yu, S. J.; Wen, D.; Hu, Q. Y.; Ye, Y. Q.; Bomba, H.; Hu, X. L.; Liu, Z. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 2018, 10, eaan3682.

    Google Scholar 

  13. Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111.

    CAS  Google Scholar 

  14. Xie, L. S.; Wang, G. H.; Sang, W.; Li, J.; Zhang, Z.; Li, W. X.; Yan, J.; Zhao, Q.; Dai, Y. L. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials 2021, 269, 120638.

    CAS  Google Scholar 

  15. Yang, W. J.; Zhang, F. W.; Deng, H. Z.; Lin, L. S.; Wang, S.; Kang, F.; Yu, G. C.; Lau, J.; Tian, R.; Zhang, M. R. et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano 2020, 14, 620–631.

    CAS  Google Scholar 

  16. Li, J. B.; Cai, W. X.; Yu, J.; Zhou, S.; Li, X. L.; He, Z. G.; Ouyang, D. F.; Liu, H. Z.; Wang, Y. J. Autophagy inhibition recovers deficient ICD-based cancer immunotherapy. Biomaterials 2022, 287, 121651.

    CAS  Google Scholar 

  17. Jin, L. J.; Shen, S.; Huang, Y. J.; Li, D. D.; Yang, X. Z. Corn-like Au/Ag nanorod-mediated NIR-II photothermal/photodynamic therapy potentiates immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Biomaterials 2021, 268, 120582.

    CAS  Google Scholar 

  18. Tang, H. L.; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003.

    CAS  Google Scholar 

  19. Ding, F. X.; Li, F.; Tang, D. S.; Wang, B.; Liu, J. Y.; Mao, X. Y.; Yin, J. Y.; Xiao, H. H.; Wang, J.; Liu, Z. Q. Restoration of the immunogenicity of tumor cells for enhanced cancer therapy via nanoparticle-mediated copper chaperone inhibition. Angew. Chem., Int. Ed. 2022, 61, e202203546.

    CAS  Google Scholar 

  20. Jiang, W.; Wang, L.; Wang, Q.; Zhou, H.; Ma, Y. C.; Dong, W.; Xu, H. X.; Wang, Y. C. Reversing immunosuppression in hypoxic and immune-cold tumors with ultrathin oxygen self-supplementing polymer nanosheets under near infrared light irradiation. Adv. Funct. Mater. 2021, 31, 2100354.

    CAS  Google Scholar 

  21. Ma, Y. C.; Zhang, Y. X.; Li, X. Q.; Zhao, Y. Y.; Li, M.; Jiang, W.; Tang, X. F.; Dou, J. X.; Lu, L. G.; Wang, F. et al. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2019, 13, 11967–11980.

    CAS  Google Scholar 

  22. Sun, S.; Chen, Q.; Tang, Z. D.; Liu, C.; Li, Z. J.; Wu, A. G.; Lin, H. W. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot-Cu2+ nanoassemblies. Angew. Chem., Int. Ed. 2020, 59, 21041–21048.

    CAS  Google Scholar 

  23. Wang, Y. X.; Ding, Y. W.; Yao, D.; Dong, H.; Ji, C. W.; Wu, J. H.; Hu, Y. Q.; Yuan, A. H. Copper-based nanoscale coordination polymers augmented tumor radioimmunotherapy for immunogenic cell death induction and T-cell infiltration. Small 2021, 17, 2006231.

    CAS  Google Scholar 

  24. Zhao, L. P.; Zheng, R. R.; Liu, L. S.; Chen, X. Y.; Guan, R. T.; Yang, N.; Chen, A. L.; Yu, X. Y.; Cheng, H.; Li, S. Y. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy. Biomaterials 2021, 275, 120970.

    CAS  Google Scholar 

  25. Xie, Q.; Li, Z.; Liu, Y.; Zhang, D. W.; Su, M.; Niitsu, H.; Lu, Y. Y.; Coffey, R. J.; Bai, M. F. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater. 2021, 134, 716–729.

    CAS  Google Scholar 

  26. Liu, H. J.; Hu, Y.; Sun, Y. J.; Wan, C.; Zhang, Z. J.; Dai, X. M.; Lin, Z. H.; He, Q. Y.; Yang, Z.; Huang, P. et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy. ACS Nano 2019, 13, 12638–12652.

    CAS  Google Scholar 

  27. Jin, F. Y.; Qi, J.; Liu, D.; You, Y. C.; Shu, G. F.; Du, Y.; Wang, J.; Xu, X. L.; Ying, X. Y.; Ji, J. S. et al. Cancer-cell-biomimetic Upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J. Control. Release 2021, 337, 90–104.

    CAS  Google Scholar 

  28. Wei, D. S.; Chen, Y. B.; Huang, Y.; Li, P.; Zhao, Y.; Zhang, X. H.; Wan, J.; Yin, X. Y.; Liu, T.; Yin, J. Y. et al. NIR-light triggered dual-cascade targeting core-shell nanoparticles enhanced photodynamic therapy and immunotherapy.. Nano Today 2021, 41, 101288.

    CAS  Google Scholar 

  29. Liu, X.; Liu, Y.; Li, X.; Huang, J. X.; Guo, X. M.; Zhang, J. L.; Luo, Z. Y.; Shi, Y. Y.; Jiang, M. S.; Qin, B. et al. ER-targeting PDT converts tumors into in situ therapeutic tumor vaccines. ACS Nano 2022, 16, 9240–9253.

    CAS  Google Scholar 

  30. Huang, J.; Xiao, Z. C.; Chen, G. J.; Li, T.; Peng, Y.; Shuai, X. T. A pH-sensitive nanomedicine incorporating catalase gene and photosensitizer augments photodynamic therapy and activates antitumor immunity. Nano Today 2022, 43, 101390.

    CAS  Google Scholar 

  31. Hu, L. Q.; Cao, Z. Y.; Ma, L. L.; Liu, Z. Q.; Liao, G. C.; Wang, J. X.; Shen, S.; Li, D. D.; Yang, X. Z. The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials 2019, 223, 119469.

    CAS  Google Scholar 

  32. Lou, X.; Wang, H.; Liu, Y.; Huang, Y. W.; Liu, Z. H.; Zhang, W.; Wang, T. Perylene-based reactive oxygen species supergenerator for immunogenic photochemotherapy against hypoxic tumors. Angew. Chem., Int. Ed. 2023, 62, e202214586.

    CAS  Google Scholar 

  33. Liu, L. L.; He, H. M.; Luo, Z. Y.; Zhou, H. M.; Liang, R. J.; Pan, H.; Ma, Y. F.; Cai, L. T. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Adv. Funct. Mater. 2020, 30, 1910176.

    CAS  Google Scholar 

  34. Zhou, Z. G.; Liu, Y.; Song, W.; Jiang, X.; Deng, Z. A.; Xiong, W.; Shen, J. L. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. J. Control. Release 2022, 352, 793–812.

    CAS  Google Scholar 

  35. Zhang, S. W.; Wang, J.; Kong, Z. Q.; Sun, X. X.; He, Z. G.; Sun, B. J.; Luo, C.; Sun, J. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials, 2022, 282, 121433.

    CAS  Google Scholar 

  36. You, Q.; Zhang, K. Y.; Liu, J. Y.; Liu, C. L.; Wang, H. Y.; Wang, M. T.; Ye, S. Y.; Gao, H. Q.; Lv, L. T.; Wang, C. et al. Persistent regulation of tumor hypoxia microenvironment via a bioinspired Pt-based oxygen nanogenerator for multimodal imaging-guided synergistic phototherapy. Adv. Sci. 2020, 7, 1903341.

    CAS  Google Scholar 

  37. Hou, G. H.; Qian, J. M.; Guo, M.; Xu, W. J.; Wang, J. L.; Wang, Y. P.; Suo, A. L. Copper coordinated nanozyme-assisted photodynamic therapy for potentiating PD-1 blockade through amplifying oxidative stress. Chem. Eng. J. 2022, 435, 134778.

    CAS  Google Scholar 

  38. Zhang, Y. F.; Liao, Y. Y.; Tang, Q. N.; Lin, J.; Huang, P. Biomimetic nanoemulsion for synergistic photodynamic-immunotherapy against hypoxic breast tumor. Angew. Chem., Int. Ed. 2021, 60, 10647–10653.

    CAS  Google Scholar 

  39. He, L. Y.; Wang, J. F.; Zhu, P. Y.; Chen, J. M.; Zhao, S. J.; Liu, X. X.; Li, Y. N.; Guo, X. L.; Yan, Z. H.; Shen, X. et al. Intelligent manganese dioxide nanocomposites induce tumor immunogenic cell death and remould tumor microenvironment. Chem. Eng. J. 2023, 461, 141369.

    CAS  Google Scholar 

  40. Huang, C.; Lin, B. Q.; Chen, C. Y.; Wang, H. M.; Lin, X. S.; Liu, J. M.; Ren, Q. F.; Tao, J.; Zhao, P.; Xu, Y. K. Synergistic reinforcing of immunogenic cell death and transforming tumor-associated macrophages via a multifunctional cascade bioreactor for optimizing cancer immunotherapy. Adv. Mater. 2022, 34, 2207593.

    CAS  Google Scholar 

  41. Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 2017, 13, 1701621.

    Google Scholar 

  42. Huang, L.; Zhao, S. J.; Wu, J. S.; Yu, L.; Singh, N.; Yang, K.; Lan, M. H.; Wang, P. F.; Kim, J. S. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coordin. Chem. Rev. 2021, 438, 213888.

    CAS  Google Scholar 

  43. Shi, C.; Li, M. L.; Zhang, Z.; Yao, Q. C.; Shao, K.; Xu, F.; Xu, N.; Li, H. D.; Fan, J. L.; Sun, W. et al. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials 2020, 233, 119755.

    CAS  Google Scholar 

  44. Hao, H. S.; Yu, M.; Yi, Y. F.; Sun, S. J.; Huang, X. Y.; Huang, C. Y.; Liu, Y. Q.; Huang, W. X.; Wang, J. Q.; Zhao, J. et al. Mesoporous calcium peroxide-ignited NO generation for amplifying photothermal immunotherapy of breast cancer. Chem. Eng. J. 2022, 437, 135371.

    CAS  Google Scholar 

  45. Wu, W. C.; Pu, Y. Y.; Zhou, B. G.; Shen, Y. C.; Gao, S.; Zhou, M.; Shi, J. L. Photoactivatable immunostimulatory nanomedicine for immunometabolic cancer therapy. J. Am. Chem. Soc. 2022, 744, 19038–19050.

    Google Scholar 

  46. Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

    Google Scholar 

  47. Zhang, L.; Yang, Z.; Ren, J. H.; Ba, L.; He, W. S.; Wong, C. Y. Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/photothermal therapy. Nano Res. 2020, 13, 1389–1398.

    CAS  Google Scholar 

  48. Liu, J. J.; Wu, M.; Pan, Y. T.; Duan, Y. K.; Dong, Z. L.; Chao, Y.; Liu, Z.; Liu, B. Biodegradable nanoscale coordination polymers for targeted tumor combination therapy with oxidative stress amplification. Adv. Funct. Mater. 2020, 30, 1908865.

    CAS  Google Scholar 

  49. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    CAS  Google Scholar 

  50. Lan, G. X.; Ni, K. Y.; Lin, W. B. Nanoscale metal-organic frameworks for phototherapy of cancer. Coordin. Chem. Rev. 2019, 379, 65–81.

    CAS  Google Scholar 

  51. Huang, Z. S.; Wang, Y. X.; Yao, D.; Wu, J. H.; Hu, Y. Q.; Yuan, A. H. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat. Commun. 2021, 12, 145.

    CAS  Google Scholar 

  52. Liu, P.; Zhu, H. J.; Wang, M. Z.; Wei, M. J.; Liu, B. X.; Hu, P. W.; Lin, J. X.; Niu, X. H. Bimodal ratiometric fluorescence and colorimetric sensing of paraoxon based on trifunctional Ce, Tb co-coordinated polymers. Sens. Actuat. B: Chem. 2022, 360, 131616.

    CAS  Google Scholar 

  53. Meng, T. J.; Shang, N. Z.; Zhao, J. N.; Su, M.; Wang, C.; Zhang, Y. F. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. J. Colloid Interf Sci. 2021, 589, 135–146.

    CAS  Google Scholar 

  54. Zhang, Y. Z.; Cui, H. G.; Zhang, R. Q.; Zhang, H. B.; Huang, W. Nanoparticulation of prodrug into medicines for cancer therapy. Adv. Sci. 2021, 8, 2101454.

    CAS  Google Scholar 

  55. Liu, J. J.; Chen, Q.; Zhu, W. W.; Yi, X.; Yang, Y.; Dong, Z. L.; Liu, Z. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv. Funct. Mater. 2017, 27, 1605926.

    Google Scholar 

  56. Wang, J. L.; Huang, M. W.; Chen, S. B.; Luo, Y. L.; Shen, S.; Du, X. J. Nanomedicine-mediated ubiquitination inhibition boosts antitumor immune response via activation of dendritic cells. Nano Res. 2021, 14, 3900–3906.

    CAS  Google Scholar 

  57. Jiang, W.; Dong, W.; Li, M.; Guo, Z. X.; Wang, Q.; Liu, Y.; Bi, Y. H.; Zhou, H.; Wang, Y. C. Nitric oxide induces immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2022, 16, 3881–3894.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52103164, and 52173142), Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515220033 and 2020A1515111059), and the Fundamental Research Funds for the Central Universities (No. JUSRP123079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinchu Ma, Hongjun Li or Jilong Wang.

Additional information

Conflicts of interest

There are no conflicts of interest to declare.

Electronic Supplementary Material

12274_2023_5919_MOESM1_ESM.pdf

Ferric iron coordinated cisplatin prodrug reprograms the immune-cold tumor microenvironment through tumor hypoxia relief for enhanced cancer photodynamic-immunotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Luo, Y., Tang, X. et al. Ferric iron coordinated cisplatin prodrug reprograms the immune-cold tumor microenvironment through tumor hypoxia relief for enhanced cancer photodynamic-immunotherapy. Nano Res. 16, 9930–9939 (2023). https://doi.org/10.1007/s12274-023-5919-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5919-0

Keywords

Navigation