Skip to main content
Log in

Electrostatically connected nanoarchitected electrocatalytic films for boosted water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Active sites of two-dimensional (2D) electrocatalysts are often partially blocked owing to their inevitable stacking and hydrophobic polymeric binders in macroscale electrodes, therefore impeding their applications in efficient electrolyzers. Here, using layered double hydroxide (LDH) nanosheets as a model 2D electrocatalyst, we demonstrate that their performance toward water splitting can be boosted when they are electrostatically assembled into an organized structure pillared by hydrophilic polyelectrolytes or nanoparticles in a layer-by-layer (LbL) fashion. In particular, their mass activity on a planar electrode can be as large as 2.267 mA·µg−1 toward oxygen evolution reaction (OER), when NiFe-LDH nanosheets are electrostatically connected by poly(sodium 4-styrenesulfonate) (PSS), while drop-casted NiFe-LDH nanosheets only have a mass activity of 0.116 mA·µg−1. In addition, these homogeneous NiFe-LDH nanofilms can be easily deposited on three-dimensional (3D) surfaces with high areas, such as carbon cloths, to serve as practical electrodes with overpotentials of 328 mV at a current density of 100 mA·cm−2, and stability for 40 h. Furthermore, Pt nanoparticles can be LbL assembled with NiFe-LDH as bifunctional electrodes for synergistically boosted oxygen and hydrogen evolution reactions (HER), leading to successful overall water splitting powered by a 1.5 V battery. This study heralds the spatial control of 2D nanomaterials in nanoscale precision as an efficient strategy for the design of advanced electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Cheng, W. R.; Xi, S. B.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Sci. Adv. 2021, 7, eabk0919.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022., 12, 1216–1227.

    Article  CAS  Google Scholar 

  4. Sanati, S.; Morsali, A.; García, H. First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy Environ. Sci. 2022, 15, 3119–3151.

    Article  CAS  Google Scholar 

  5. Wang, C. P.; Feng, Y.; Sun, H.; Wang, Y. R.; Yin, J.; Yao, Z. P.; Bu, X. H.; Zhu, J. Self-optimized metal-organic framework electrocatalysts with structural stability and high current tolerance for water oxidation. ACS Catal. 2021, 11, 7132–7143.

    Article  CAS  Google Scholar 

  6. Wu, Z. X.; Zhao, Y.; Xiao, W. P.; Fu, Y. L.; Jia, B. H.; Ma, T. Y.; Wang, L. Metallic-bonded Pt-Co for atomically dispersed Pt in the Co4N matrix as an efficient electrocatalyst for hydrogen generation. ACS Nano 2022, 16, 18038–18047.

    Article  CAS  PubMed  Google Scholar 

  7. Gao, Y. X.; Chen, Z.; Zhao, Y.; Yu, W. L.; Jiang, X. L.; He, M. S.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range. Appl. Catal. B:Environ. 2022, 303, 120879.

    Article  CAS  Google Scholar 

  8. Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.

    Article  Google Scholar 

  9. Liu, D.; Chen, M. P.; Du, X. Y.; Ai, H. Q.; Lo, K. H.; Wang, S. P.; Chen, S.; Xing, G. C.; Wang, X. S.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2021, 31, 2008983.

    Article  CAS  Google Scholar 

  10. Yu, W. L.; Chen, Z.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Chai, Y. M.; Wu, Z. X.; Wang, L. Superb all-pH hydrogen evolution performances powered by ultralow Pt-decorated hierarchical Ni-Mo porous microcolumns. Adv. Funct. Mater. 2023, 33, 2210855.

    Article  CAS  Google Scholar 

  11. Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. H. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102–109.

    Article  Google Scholar 

  12. Kim, Y. J.; Lee, G. R.; Cho, E. N.; Jung, Y. S. Fabrication and applications of 3D nanoarchitectures for advanced electrocatalysts and sensors. Adv. Mater. 2020, 32, 1907500.

    Article  CAS  Google Scholar 

  13. Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

    Article  CAS  Google Scholar 

  14. Kuai, C. G.; Zhang, Y.; Wu, D. Y.; Sokaras, D.; Mu, L. Q.; Spence, S.; Nordlund, D.; Lin, F.; Du, X. W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019, 9, 6027–6032.

    Article  CAS  Google Scholar 

  15. Chattot, R.; Bordet, P.; Martens, I.; Drnec, J.; Dubau, L.; Maillard, F. Building practical descriptors for defect engineering of electrocatalytic materials. ACS Catal. 2020, 10, 9046–9056.

    Article  CAS  Google Scholar 

  16. Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

    Article  Google Scholar 

  17. Chen, Z.; Li, Q. C.; Xiang, H. M.; Wang, Y.; Yang, P. F.; Dai, C. L.; Zhang, H. D.; Xiao, W. P.; Wu, Z. X.; Wang, L. Hierarchical porous NiFe-P@NC as an efficient electrocatalyst for alkaline hydrogen production and seawater electrolysis at high current density. Inorg. Chem. Front. 2023, 10, 1493–1500.

    Article  CAS  Google Scholar 

  18. Anantharaj, S.; Kundu, S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting. ACS Energy Lett. 2019, 4, 1260–1264.

    Article  CAS  Google Scholar 

  19. Dou, Y. H.; He, C. T.; Zhang, L.; Yin, H. J.; Al-Mamun, M.; Ma, J. M.; Zhao, H. J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat. Commun. 2020, 11, 1664.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, C.; Shin, K.; Jung, C.; Choi, P. P.; Henkelman, G.; Lee, H. M. Atomically embedded Ag via electrodiffusion boosts oxygen evolution of CoOOH nanosheet arrays. ACS Catal. 2020, 10, 562–569.

    Article  CAS  Google Scholar 

  21. Lin, Y. P.; Wang, H.; Peng, C. K.; Bu, L. M.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J. Q.; Lin, Y. G.; Lee, J. M. et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426.

    Article  CAS  Google Scholar 

  22. Wu, Z. X.; Yang, P. F.; Li, Q. C.; Xiao, W. P.; Li, Z. J.; Xu, G. R.; Liu, F. S.; Jia, B. H.; Ma, T. Y.; Feng, S. H. et al. Microwave synthesis of Pt clusters on black TiO2 with abundant oxygen vacancies for efficient acidic electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202300406.

    Article  CAS  Google Scholar 

  23. Shen, P.; Zhou, B. W.; Chen, Z.; Xiao, W. P.; Fu, Y. L.; Wan, J.; Wu, Z. X.; Wang, L. Ruthenium-doped 3D Cu2O nanochains as efficient electrocatalyst towards hydrogen evolution and hydrazine oxidation. Appl. Catal. B:Environ. 2023, 325, 122305.

    Article  CAS  Google Scholar 

  24. Zhao, X. H.; Levell, Z. H.; Yu, S.; Liu, Y. Y. Atomistic understanding of two-dimensional electrocatalysts from first principles. Chem. Rev. 2022, 122, 10675–10709.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Z. K.; Wang, X. K.; Han, Z. K.; Zhang, S. Y.; Pollastri, S.; Fan, Q. Q.; Qu, Z. Y.; Sarker, D.; Scheu, C.; Huang, M. H. et al. Revealing the formation mechanism and optimizing the synthesis conditions of layered double hydroxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2023, 62, e202215728.

    Article  CAS  Google Scholar 

  26. He, Y. Q.; Jia, L. L.; Lu, X. Y.; Wang, C. H.; Liu, X. H.; Chen, G.; Wu, D.; Wen, Z. X.; Zhang, N.; Yamauchi, Y. et al. Molecular-scale manipulation of layer sequence in heteroassembled nanosheet films toward oxygen evolution electrocatalysts. ACS Nano 2022, 16, 4028–4040.

    Article  CAS  PubMed  Google Scholar 

  27. Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

    Article  CAS  Google Scholar 

  28. Wang, P. W.; Hayashi, T.; Meng, Q. B.; Wang, Q.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.

    Article  Google Scholar 

  29. Sha, Y.; Peng, Y. D.; Huang, K.; Li, L.; Liu, Z. 3D binder-free integrated electrodes prepared by phase separation and laser induction (PSLI) method for oxygen electrocatalysis and zinc-air battery. Adv. Energy Mater. 2022, 12, 2200906.

    Article  CAS  Google Scholar 

  30. Li, J.; Gao, X.; Li, Z. Z.; Wang, J. H.; Zhu, L.; Yin, C.; Wang, Y.; Li, X. B.; Liu, Z. F.; Zhang, J. et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity. Adv. Funct. Mater. 2019, 29, 1808079.

    Article  Google Scholar 

  31. Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

    Article  CAS  Google Scholar 

  32. Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 22062–22069.

    Article  CAS  Google Scholar 

  33. Wang, C. P.; Lin, Y. X.; Cui, L.; Zhu, J.; Bu, X. H. 2D metal-organic frameworks as competent electrocatalysts for water splitting. Small 2023, 19, 2207342.

    Article  CAS  Google Scholar 

  34. Lei, H.; Wan, Q. X.; Tan, S. Z.; Wang, Z. L.; Mai, W. J. Pt-quantum-dot-modified sulfur-doped NiFe layered double hydroxide for high-current-density alkaline water splitting at industrial temperature. Adv. Mater. 2023, 35, 2208209.

    Article  CAS  Google Scholar 

  35. Wang, C. P.; Liu, H. Y.; Bian, G.; Gao, X. X.; Zhao, S. C.; Kang, Y.; Zhu, J.; Bu, X. H. Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution. Small 2019, 15, 1906086.

    Article  CAS  Google Scholar 

  36. Duan, M. T.; Qiu, M. J.; Sun, S. Q.; Guo, X. M.; Liu, Y. J.; Zheng, X. J.; Cao, F.; Kong, Q. H.; Zhang, J. H. Intercalating assembly of NiFe LDH nanosheets/CNTs composite as high-performance electrocatalyst for oxygen evolution reaction. Appl. Clay Sci. 2022, 216, 106360.

    Article  CAS  Google Scholar 

  37. Richardson, J. J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491.

    Article  PubMed  Google Scholar 

  38. Zhang, Y.; Wu, B. Q.; He, Y. K.; Deng, W. Y.; Li, J. W.; Li, J. Y.; Qiao, N.; Xing, Y. F.; Yuan, X. Y.; Li, N. et al. Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy 2022, 93, 106858.

    Article  CAS  Google Scholar 

  39. Lipton, J.; Weng, G. M.; Röhr, J. A.; Wang, H.; Taylor, A. D. Layer-by-layer assembly of two-dimensional materials: Meticulous control on the nanoscale. Matter 2020, 2, 1148–1165.

    Article  Google Scholar 

  40. Ko, Y.; Park, J.; Mo, J.; Lee, S.; Song, Y.; Ko, Y.; Lee, H.; Kim, Y.; Huh, J.; Lee, S. W. et al. Layer-by-layer assembly-based electrocatalytic fibril electrodes enabling extremely low overpotentials and stable operation at 1 A·cm−2 in water-splitting reaction. Adv. Funct. Mater. 2021, 31, 2102530.

    Article  CAS  Google Scholar 

  41. Xiong, P.; Zhang, X. Y.; Wan, H.; Wang, S. J.; Zhao, Y. F.; Zhang, J. Q.; Zhou, D.; Gao, W. C.; Ma, R. Z.; Sasaki, T. et al. Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 2019, 19, 4518–4526.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Zhang, C.; Zhao, J. W.; Zhou, L.; Li, Z. H.; Shao, M. F.; Wei, M. Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. J. Mater. Chem. A 2016, 4, 11516–11523.

    Article  CAS  Google Scholar 

  43. Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

    Article  CAS  PubMed  Google Scholar 

  44. Cui, Y. L. S.; Tan, X.; Xiao, K. F.; Zhao, S. L.; Bedford, N. M.; Liu, Y. F.; Wang, Z. C.; Wu, K. H.; Pan, J.; Saputera, W. H. et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett. 2020, 5, 3560–3568.

    Article  CAS  Google Scholar 

  45. Yu, J. F.; Martin, B. R.; Clearfield, A.; Luo, Z. P.; Sun, L. Y. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448–9451.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

    Article  Google Scholar 

  47. Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.

    Article  CAS  Google Scholar 

  48. Chen, Y. P.; Zhou, Q.; Zhao, G. Q.; Yu, Z. W.; Wang, X. L.; Dou, S. X.; Sun, W. P. Electrochemically inert g-C3N4 promotes water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1705583.

    Article  Google Scholar 

  49. Anantharaj, S.; Ede, S. R.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771.

    Article  CAS  Google Scholar 

  50. Lin, H. W.; Raja, D. S.; Chuah, X. F.; Hsieh, C. T.; Chen, Y. A.; Lu, S. Y. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl. Catal. B:Environ. 2019, 258, 118023.

    Article  CAS  Google Scholar 

  51. Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.

    Article  Google Scholar 

  52. Mei, Y.; Zhou, J. H.; Hao, Y. T.; Hu, X.; Lin, J.; Huang, Y. X.; Li, L.; Feng, C. G.; Wu, F.; Chen, R. J. High-lithiophilicity host with micro/nanostructured active sites based on wenzel wetting model for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2106676.

    Article  CAS  Google Scholar 

  53. Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 2019, 29, 1808367.

    Article  Google Scholar 

  54. Wang, C. P.; Kong, L. J.; Sun, H.; Zhong, M.; Cui, H. J.; Zhang, Y. H.; Wang, D. H.; Zhu, J.; Bu, X. H. Carbon layer coated Ni3S2/MoS2 nanohybrids as efficient bifunctional electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 5603–5609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 52273076, 52111540268, and 12004195) and the 111 Project (No. B18030) in China. The authors also acknowledge the financial support by Haihe Laboratory of Sustainable Chemical Transformations (No. YYJC202101) and Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics (No. KF202113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Xian-He Bu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CP., Sun, H., Bian, G. et al. Electrostatically connected nanoarchitected electrocatalytic films for boosted water splitting. Nano Res. 17, 1114–1122 (2024). https://doi.org/10.1007/s12274-023-5917-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5917-2

Keywords

Navigation