Skip to main content
Log in

Controlling assembly-induced symmetry-breaking by tuning the vortex-responsive nanostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The generation of chirality in supramolecular structures from achiral building blocks has remained a challenge for a long time. In this study, we present a vortex-assisted chiral supramolecular polymerization from a series of achiral C3-symmetric monomers, where the mechanism of symmetry-breaking is systematically investigated. By increasing the supersaturation, at the early stage of nucleation and growth, highly ordered assemblies can be generated as the initial chiral nuclei. Meanwhile, chiral assemblies from high supersaturation are hard to interwind into clusters, where clusters as nuclei are not conducive to being fractured by sheer force of vortex fluid. Therefore, it is concluded that chiral assemblies in the nucleation stage possess low energy barrier, so that chiral nuclei could be fractured and replicated by the vortex. By enlarging the initial chiral bias, the major chiral nuclei can evolute into the final chiral polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hegstrom, R. A.; Kondepudi, D. K. The handedness of the universe. Sci. Am. 1990, 262, 108–115.

    Google Scholar 

  2. Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

    CAS  Google Scholar 

  3. Zhu, Y.; Xu, Y. Y.; Zou, G.; Zhang, Q. J. Chirality transfer and modulation in LB films derived from the diacetylene/melamine hydrogen-bonded complex. Chirality 2015, 27, 492–499.

    CAS  Google Scholar 

  4. Li, Y.; Yao, K.; Chen, Y. H.; Quan, Y. W.; Cheng, Y. X. Full-color and white circularly polarized luminescence promoted by liquid crystal self-assembly containing chiral naphthalimide dyes. Adv. Opt. Mater. 2021, 9, 2100961.

    CAS  Google Scholar 

  5. San Jose, B. A.; Yan, J. L.; Akagi, K. Dynamic switching of the circularly polarized luminescence of disubstituted polyacetylene by selective transmission through a thermotropic chiral nematic liquid crystal. Angew. Chem., Int. Ed. 2014, 53, 10641–10644.

    CAS  Google Scholar 

  6. Jones, C. D.; Simmons, H. T. D.; Horner, K. E.; Liu, K. Q.; Thompson, R. L.; Steed, J. W. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 2019, 11, 375–381.

    CAS  Google Scholar 

  7. Liu, G. F.; Yao, L. F.; Fu, K.; Zheng, S. Y.; Yang, G. B.; Zhao, Y. L. Photocyclization-induced emission enhancement and circularly polarized luminescence inversion of achiral emitters in co-assembled gels. Small Struct. 2022, 3, 2200209.

    CAS  Google Scholar 

  8. Wang, W.; Zhang, Y. K.; Tang, B.; Hou, H. P.; Tang, S. S.; Luo, A. Q. Chiral hydrogen-bonded organic frameworks used as a chiral stationary phase for chiral separation in gas chromatography. J. Chromatogr. A 2022, 1675, 463150.

    CAS  Google Scholar 

  9. Luo, X. F.; Deng, J. P.; Yang, W. T. Helix-sense-selective polymerization of achiral substituted acetylenes in chiral micelles. Angew. Chem., Int. Ed. 2011, 50, 4909–4912.

    CAS  Google Scholar 

  10. Sahoo, D.; Imam, M. R.; Peterca, M.; Partridge, B. E.; Wilson, D. A.; Zeng, X. B.; Ungar, G.; Heiney, P. A.; Percec, V. Hierarchical self-organization of chiral columns from chiral supramolecular spheres. J. Am. Chem. Soc. 2018, 140, 13478–13487.

    CAS  Google Scholar 

  11. An, S. G.; Hao, A. Y.; Xing, P. Y. Halogen bonding mediated hierarchical supramolecular chirality. ACS Nano 2021, 15, 15306–15315.

    CAS  Google Scholar 

  12. Mason, M. L.; Lalisse, R. F.; Finnegan, T. J.; Hadad, C. M.; Modarelli, D. A.; Parquette, J. R. pH-controlled chiral packing and self-assembly of a coumarin tetrapeptide. Langmuir 2019, 35, 12460–12468.

    CAS  Google Scholar 

  13. Cheng, X. X.; Miao, T. F.; Yin, L.; Ji, Y. J.; Li, Y. J.; Zhang, Z. B.; Zhang, W.; Zhu, X. L. In situ controlled construction of a hierarchical supramolecular chiral liquid-crystalline polymer assembly. Angew. Chem., Int. Ed. 2020, 59, 9669–9677.

    CAS  Google Scholar 

  14. Yang, F.; Yue, B. B.; Zhu, L. L. Light-triggered modulation of supramolecular chirality. Chem.—Eur. J. 2023, 29, e202203794.

    CAS  Google Scholar 

  15. Lee, S.; Kim, K. Y.; Jung, S. H.; Lee, J. H.; Yamada, M.; Sethy, R.; Kawai, T.; Jung, J. H. Finely controlled circularly polarized luminescence of a mechano-responsive supramolecular polymer. Angew. Chem., Int. Ed. 2019, 58, 18878–18882.

    CAS  Google Scholar 

  16. Hashimoto, Y.; Nakashima, T.; Kuno, J.; Yamada, M.; Kawai, T. Dynamic modulation of circularly polarized luminescence in photoresponsive assemblies. ChemNanoMat 2018, 4, 815–820.

    CAS  Google Scholar 

  17. Ślęczkowski, M. L.; Mabesoone, M. F. J.; Ślęczkowski, P.; Palmans, A. R. A.; Meijer, E. W. Competition between chiral solvents and chiral monomers in the helical bias of supramolecular polymers. Nat. Chem. 2021, 13, 200–207.

    Google Scholar 

  18. Yao, L. F.; Fu, K.; Wang, X. J.; He, M. L.; Zhang, W. N.; Liu, P. Y.; He, Y. P.; Liu, G. F. Metallophilic interaction-mediated hierarchical assembly and temporal-controlled dynamic chirality inversion of metal–organic supramolecular polymers. ACS Nano 2023, 17, 2159–2169.

    CAS  Google Scholar 

  19. Wang, S.; Jiang, H. J.; Zhang, L.; Jiang, J.; Liu, M. H. Enantioselective activity of hemin in supramolecular gels formed by co-assembly with a chiral gelator. ChemPlusChem 2018, 83, 1038–1043.

    CAS  Google Scholar 

  20. Liu, G. F.; Zhao, Y. L. Switching between phosphorescence and fluorescence controlled by chiral self-assembly. Adv. Sci. 2017, 4, 1700021.

    Google Scholar 

  21. Dou, X. Q.; Mehwish, N.; Zhao, C. L.; Liu, J. Y.; Xing, C.; Feng, C. L. Supramolecular hydrogels with tunable chirality for promising biomedical applications. Acc. Chem. Res. 2020, 53, 852–862.

    CAS  Google Scholar 

  22. Jiang, H. J.; Liu, R.; Wang, L.; Wang, X. Y.; Zhang, M. M.; Lin, S. S.; Cao, Z. P.; Wu, F.; Liu, Y. B.; Liu, J. Y. Chiral-selective antigen-presentation by supramolecular chiral polymer micelles. Adv. Mater. 2023, 35, 2208157.

    CAS  Google Scholar 

  23. Ji, W.; Liu, G. F.; Li, Z. J.; Feng, C. L. Influence of C−H⋯O hydrogen bonds on macroscopic properties of supramolecular assembly. ACS Appl. Mater. Interfaces 2016, 8, 5188–5195.

    CAS  Google Scholar 

  24. Yue, B. B.; Yin, L. Y.; Zhao, W. D.; Jia, X. Y.; Zhu, M. J.; Wu, B.; Wu, S.; Zhu, L. L. Chirality transfer in coassembled organogels enabling wide-range naked-eye enantiodifferentiation. ACS Nano 2019, 13, 12438–12444.

    CAS  Google Scholar 

  25. Imai, Y.; Nakano, Y.; Kawai, T.; Yuasa, J. A smart sensing method for object identification using circularly polarized luminescence from coordination-driven self-assembly. Angew. Chem., Int. Ed. 2018, 57, 8973–8978.

    CAS  Google Scholar 

  26. Ribó, J. M.; Crusats, J.; Sagués, F.; Claret, J.; Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292, 2063–2066.

    Google Scholar 

  27. Hamba, F.; Niimura, K.; Kitagawa, Y.; Ishii, K. Helicity transfer in rotary evaporator flow. Phys. Fluids 2014, 26, 017101.

    Google Scholar 

  28. Rubires, R.; Farrera, J. A.; Ribó, J. M. Stirring effects on the spontaneous formation of chirality in the homoassociation of diprotonated meso-tetraphenylsulfonato porphyrins. Chem.Eur. J. 2001, 7, 436–446.

    CAS  Google Scholar 

  29. Huang, J. C.; Xiao, H.; Chen, Z. X.; Zheng, W. X.; Huang, C. C.; Wu, S. T.; Xie, Z. H.; Zhuang, N. F. Static retention of dynamic chiral arrangements for achiral shear thinning metal–organic colloids. Chem.Eur. J. 2021, 27, 14017–14024.

    CAS  Google Scholar 

  30. Tsuda, A.; Alam, A.; Harada, T.; Yamaguchi, T.; Ishii, N.; Aida, T. Spectroscopic visualization of vortex flows using dye-containing nanofibers. Angew. Chem., Int. Ed. 2007, 46, 8198–8202.

    CAS  Google Scholar 

  31. Tsuda, A. Hydrodynamic helical orientations of nanofibers in a vortex. Symmetry 2014, 6, 383–395.

    Google Scholar 

  32. Sanada, K.; Washio, A.; Nishihata, K.; Yagishita, F.; Yoshida, Y.; Mino, T.; Suzuki, S.; Kasashima, Y.; Sakamoto, M. Chiral symmetry breaking of racemic 3-phenylsuccinimides via crystallization-induced dynamic deracemization. Cryst. Growth Des. 2021, 21, 6051–6055.

    CAS  Google Scholar 

  33. Viedma C. Chiral symmetry breaking during crystallization: Complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 2005, 94, 065504.

    Google Scholar 

  34. Sögütoglu, L. C.; Steendam, R. R. E.; Meekes, H.; Vlieg, E.; Rutjes, F. P. J. T. Viedma ripening: A reliable crystallisation method to reach single chirality. Chem. Soc. Rev. 2015, 44, 6723–6732.

    Google Scholar 

  35. Sang, Y. T.; Yang, D.; Duan, P. F.; Liu, M. H. Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chem. Sci. 2019, 10, 2718–2724.

    CAS  Google Scholar 

  36. Blanco, C.; Crusats, J.; El-Hachemi, Z.; Moyano, A.; Veintemillas-Verdaguer, S.; Hochberg, D.; Ribó, J. M. The Viedma deracemization of racemic conglomerate mixtures as a paradigm of spontaneous mirror symmetry breaking in aggregation and polymerization. ChemPhysChem 2013, 14, 3982–3993.

    CAS  Google Scholar 

  37. Wu, B. H.; Liu, L.; Zhou, L.; Magana, J. R.; Hendrix, M. M. R. M.; Wang, J. H.; Li, C. D.; Ding, P.; Wang, Y. M.; Guo, X. H. et al. Complex supramolecular fiber formed by coordination-induced self-assembly of benzene-1,3,5-tricarboxamide (BTA). J. Colloid Interface Sci. 2022, 608, 1297–1307.

    CAS  Google Scholar 

  38. Engelen, W.; Wijnands, S. P. W.; Merkx, M. Accelerating DNA-based computing on a supramolecular polymer. J. Am. Chem. Soc. 2018, 140, 9758–9767.

    CAS  Google Scholar 

  39. Bochicchio, D.; Pavan, G. M. From cooperative self-assembly to water-soluble supramolecular polymers using coarse-grained simulations. ACS Nano 2017, 11, 1000–1011.

    CAS  Google Scholar 

  40. Smulders, M. M. J.; Schenning, A. P. H. J.; Meijer, E. W. Insight into the mechanisms of cooperative self-assembly: The “sergeants-and-soldiers” principle of chiral and achiral C3-symmetrical discotic triamides. J. Am. Chem. Soc. 2008, 130, 606–611.

    CAS  Google Scholar 

  41. Gao, P.; Zhan, C. L.; Liu, M. H. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir 2006, 22, 775–779.

    CAS  Google Scholar 

  42. Barata, P. A.; Serrano, M. L. Salting-out precipitation of potassium dihydrogen phosphate (KDP): IV. Characterisation of the final product. J. Cryst. Growth 1998, 194, 109–118.

    CAS  Google Scholar 

  43. Raymer, D. M.; Smith, D. E. Spontaneous knotting of an agitated string. Proc. Natl. Acad. Sci. USA 2007, 104, 16432–16437.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52173159 and 92256304), the Beijing Municipal Science and Technology Commission (No. JQ21003), and the National Key R&D Program of the Ministry of Science and Technology of the People’s Republic of China (No. 2021YFA1200303). Numerical computations were performed on Hefei advanced computing center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Duan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, K., Xiao, C. et al. Controlling assembly-induced symmetry-breaking by tuning the vortex-responsive nanostructures. Nano Res. 16, 13450–13456 (2023). https://doi.org/10.1007/s12274-023-5850-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5850-4

Keywords

Navigation