Skip to main content
Log in

A single magnetic nanoplatform-mediated combination therapy of immune checkpoint silencing and magnetic hyperthermia for enhanced anti-cancer immunity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a revolutionary cancer treatment strategy, immunotherapy has attracted great attention. However, the effect of immunotherapy such as immune checkpoint blockade (ICB) is usually limited by insufficient immune response in the body. Herein, a polycation-based magnetic nanocluster platform was developed to load therapeutic nucleic acids, which could achieve gene therapy-mediated ICB and efficient magnetic hyperthermia therapy (MHT). The silencing of immune checkpoints together with MHT-induced immunogenic cell death (ICD) effectively alleviated the immune escape of cancer cells and significantly enhanced the visibility of cancer cells to the immune system. This combined treatment strategy activated a strong adaptive anticancer immune response in vivo, greatly inhibiting tumor growth, metastasis and recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.

    CAS  Google Scholar 

  2. Blankenstein, T.; Coulie, P. G.; Gilboa, E.; Jaffee, E. M. The determinants of tumour immunogenicity. Nat. Rev. Cancer 2012, 12, 307–313.

    CAS  Google Scholar 

  3. Meng, J. L.; Zhang, P. S.; Chen, Q. Z.; Wang, Z. H.; Gu, Y.; Ma, J.; Li, W.; Yang, C.; Qiao, Y. Y.; Hou, Y. et al. Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic cancer immunotherapy. Adv. Mater. 2022, 34, e2202168.

    Google Scholar 

  4. Wang, M. Y.; Wang, Y. F.; Mu, Y. T.; Yang, F. X.; Yang, Z. B.; Liu, Y. X.; Huang, L. L.; Liu, S.; Guan, X. G.; Xie, Z. G. et al. Engineering SIRPα cellular membrane-based nanovesicles for combination immunotherapy. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5397-4.

  5. Xu, J. L.; Ma, Q. L.; Zhang, Y.; Fei, Z. Y.; Sun, Y. F.; Fan, Q.; Liu, B.; Bai, J. Y.; Yu, Y.; Chu, J. H. et al. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 2022, 13, 110.

    CAS  Google Scholar 

  6. Xu, Y. D.; Ma, S.; Zhao, J. Y.; Si, X. H.; Huang, Z. C.; Zhang, Y.; Song, W. T.; Tang, Z. H.; Chen, X. S. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Res. 2022, 15, 1183–1192.

    CAS  Google Scholar 

  7. Feng, Y. J.; Wu, J. Y.; Chen, J.; Lin, L.; Zhang, S. J.; Yang, Z. Y.; Sun, P. J.; Li, Y. H.; Tian, H. Y.; Chen, X. S. Targeting dual gene delivery nanoparticles overcomes immune checkpoint blockade induced adaptive resistance and regulates tumor microenvironment for improved tumor immunotherapy. Nano Today 2021, 38, 101194.

    CAS  Google Scholar 

  8. Yue, W. W.; Chen, L.; Yu, L. D.; Zhou, B. G.; Yin, H. H.; Ren, W. W.; Liu, C.; Guo, L. H.; Zhang, Y. F.; Sun, L. P. et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 2019, 10, 2025.

    Google Scholar 

  9. Fang, H. P.; Guo, Z. P.; Chen, J.; Lin, L.; Hu, Y. Y.; Li, Y. H.; Tian, H. Y.; Chen, X. S. Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nat. Commun. 2021, 12, 6742.

    CAS  Google Scholar 

  10. Xu, F.; Fei, Z. Y.; Dai, H. X.; Xu, J. L.; Fan, Q.; Shen, S. F.; Zhang, Y.; Ma, Q. L.; Chu, J. C.; Peng, F. et al. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment. Adv. Mater. 2022, 34, e2106265.

    Google Scholar 

  11. Tang, H. L.; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, e2006003.

    Google Scholar 

  12. Yang, Z. Y.; Guo, Z. P.; Tian, H. Y.; Chen, X. S. Enhancers in polymeric nonviral gene delivery systems. VIEW 2021, 2, 20200072.

    Google Scholar 

  13. Hong, T.; Shen, X. Y.; Syeda, M. Z.; Zhang, Y.; Sheng, H. N.; Zhou, Y. P.; Xu, J. M.; Zhu, C. J.; Li, H. J.; Gu, Z. et al. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. Nano Res. 2023, 16, 2660–2671.

    CAS  Google Scholar 

  14. Vaughan, H. J.; Green, J. J.; Tzeng, S. Y. Cancer-targeting nanoparticles for combinatorial nucleic acid delivery. Adv. Mater. 2020, 32, e1901081.

  15. Lostalé-Seijo, I.; Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem. 2018, 2, 258–277.

    Google Scholar 

  16. Kumar, R.; Santa Chalarca, C. F.; Bockman, M. R.; Bruggen, C. V.; Grimme, C. J.; Dalal, R. J.; Hanson, M. G.; Hexum, J. K.; Reineke, T. M. Polymeric delivery of therapeutic nucleic acids. Chem. Rev. 2021, 121, 11527–11652.

    CAS  Google Scholar 

  17. Li, T. L.; Song, R. D.; Sun, F.; Saeed, M.; Guo, X. Z.; Ye, J. Y.; Chen, F. M.; Hou, B.; Zhu, Q. R.; Wang, Y. J. et al. Bioinspired magnetic nanocomplexes amplifying STING activation of tumor-associated macrophages to potentiate cancer immunotherapy. Nano Today 2022, 43, 101400.

    CAS  Google Scholar 

  18. Fang, Y. F.; He, Y.; Wu, C. H.; Zhang, M.; Gu, Z. Y.; Zhang, J. X.; Liu, E. G.; Xu, Q.; Asrorov, A. M.; Huang, Y. Z. Magnetism-mediated targeting hyperthermia-immunotherapy in “cold” tumor with CSF1R inhibitor. Theranostics 2021, 11, 6860–6872.

    CAS  Google Scholar 

  19. Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111.

    CAS  Google Scholar 

  20. Liu, X. L.; Zheng, J. J.; Sun, W.; Zhao, X.; Li, Y.; Gong, N. Q.; Wang, Y. Y.; Ma, X. W.; Zhang, T. B.; Zhao, L. Y. et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. ACS Nano 2019, 13, 8811–8825.

    CAS  Google Scholar 

  21. Yi, Y. F.; Yu, M.; Feng, C.; Hao, H. S.; Zeng, W. W.; Lin, C. C.; Chen, H. Z.; Lv, F.; Zhu, D. W.; Ji, X. Y. et al. Transforming “cold” tumors into “hot” ones via tumor-microenvironment-responsive siRNA micelleplexes for enhanced immunotherapy. Matter 2022, 5, 2285–2305.

    CAS  Google Scholar 

  22. Li, W. X.; Xie, L. S.; Ju, Y.; Zhang, Z.; Li, B.; Li, J.; Sang, W.; Wang, G. H.; Tian, H.; Dai, Y. L. A “three musketeers” tactic for inclining interferon-γ as a comrade-in-arm to reinforce the synergistic-tumoricidal therapy. Nano Res. 2022, 15, 3458–3470.

    CAS  Google Scholar 

  23. Sen, S.; Won, M.; Levine, M. S.; Noh, Y.; Sedgwick, A. C.; Kim, J. S.; Sessler, J. L.; Arambula, J. F. Metal-based anticancer agents as immunogenic cell death inducers: The past, present, and future. Chem. Soc. Rev. 2022, 51, 1212–1233.

    CAS  Google Scholar 

  24. Liu, Z. Y.; Xu, X. T.; Liu, K. N.; Zhang, J. T.; Ding, D.; Fu, R. Immunogenic cell death in hematological malignancy therapy. Adv. Sci. 2023, 10, e2207475.

    Google Scholar 

  25. Qi, J.; Jin, F. Y.; You, Y. C.; Du, Y.; Liu, D.; Xu, X. L.; Wang, J.; Zhu, L. W.; Chen, M. J.; Shu, G. F. et al. Synergistic effect of tumor chemo-immunotherapy induced by leukocyte-hitchhiking thermal-sensitive micelles. Nat. Commun. 2021, 12, 4755.

    CAS  Google Scholar 

  26. Huang, Z. S.; Wang, Y. X.; Yao, D.; Wu, J. H.; Hu, Y. Q.; Yuan, A. H. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat. Commun. 2021, 12, 145.

    CAS  Google Scholar 

  27. Ma, Y. C.; Zhang, Y. X.; Li, X. Q.; Zhao, Y. Y.; Li, M.; Jiang, W.; Tang, X. F.; Dou, J. X.; Lu, L. G.; Wang, F. et al. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2019, 13, 11967–11980.

    CAS  Google Scholar 

  28. Shen, W.; Zhang, Y.; Wan, P. Q.; An, L.; Zhang, P.; Xiao, C. S.; Chen, X. S. Antineoplastic drug-free anticancer strategy enabled by host-defense-peptides-mimicking synthetic polypeptides. Adv. Mater. 2020, 32, e2001108.

    Google Scholar 

  29. Yan, X.; Sun, T. C.; Song, Y. H.; Peng, W.; Xu, Y. J.; Luo, G. Y.; Li, M.; Chen, S.; Fang, W. W.; Dong, L. et al. In situ thermal-responsive magnetic hydrogel for multidisciplinary therapy of hepatocellular carcinoma. Nano Lett. 2022, 22, 2251–2260.

    CAS  Google Scholar 

  30. Song, Y. H.; Li, D. D.; Lu, Y.; Jiang, K.; Yang, Y.; Xu, Y. J.; Dong, L.; Yan, X.; Ling, D. S.; Yang, X. Z. et al. Ferrimagnetic mPEG-b-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy. Natl. Sci. Rev. 2020, 7, 723–736.

    CAS  Google Scholar 

  31. Ximendes, E.; Marin, R.; Shen, Y. L.; Ruiz, D.; Gómez-Cerezo, D.; Rodríguez-Sevilla, P.; Lifante, J.; Viveros-Méndez, P. X.; Gámez, F.; García-Soriano, D. et al. Infrared-emitting multimodal nanostructures for controlled in vivomagnetic hyperthermia. Adv. Mater. 2021, 33, e2100077.

    Google Scholar 

  32. Wu, H. A.; Liu, L.; Song, L. N.; Ma, M.; Gu, N.; Zhang, Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 2019, 13, 14013–14023.

    CAS  Google Scholar 

  33. Gavilán, H.; Avugadda, S. K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B. T.; Chantrell, R.; Pellegrino, T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 2021, 50, 11614–11667.

    Google Scholar 

  34. Balakrishnan, P. B.; Silvestri, N.; Fernandez-Cabada, T.; Marinaro, F.; Fernandes, S.; Fiorito, S.; Miscuglio, M.; Serantes, D.; Ruta, S.; Livesey, K. et al. Exploiting unique alignment of cobalt ferrite nanoparticles, mild hyperthermia, and controlled intrinsic cobalt toxicity for cancer therapy. Adv. Mater. 2020, 32, e2003712.

    Google Scholar 

  35. Carter, T. J.; Agliardi, G.; Lin, F. Y.; Ellis, M.; Jones, C.; Robson, M.; Richard-Londt, A.; Southern, P.; Lythgoe, M.; Zaw Thin, M. et al. Potential of magnetic hyperthermia to stimulate localized immune activation. Small 2021, 17, e2005241.

    Google Scholar 

  36. Panday, R.; Abdalla, A. M. E.; Yu, M.; Li, X. H.; Ouyang, C. X.; Yang, G. Functionally modified magnetic nanoparticles for effective siRNA delivery to prostate cancer cells in vitro. J. Biomater. Appl. 2020, 34, 952–964.

    CAS  Google Scholar 

  37. Chiu-Lam, A.; Staples, E.; Pepine, C. J.; Rinaldi, C. Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Sci. Adv. 2021, 7, eabe3005.

    Google Scholar 

  38. Zhao, X.; Meng, Z. G.; Wang, Y.; Chen, W. J.; Sun, C. J.; Cui, B.; Cui, J. H.; Yu, M. L.; Zeng, Z. H.; Guo, S. D. et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants 2017, 3, 956–964.

    CAS  Google Scholar 

  39. Tay, A. The benefits of going small: Nanostructures for mammalian cell transfection. ACS Nano 2020, 14, 7714–7721.

    CAS  Google Scholar 

  40. Zhang, T. Y.; Xu, Q. H.; Huang, T.; Ling, D. S.; Gao, J. Q. New insights into biocompatible iron oxide nanoparticles: A potential booster of gene delivery to stem cells. Small 2020, 16, e2001588.

    Google Scholar 

  41. Jiang, P. P.; Zhu, Y.; Kang, K.; Luo, B.; He, J.; Wu, Y. Protein corona of magnetic PEI/siRNA complex under the influence of a magnetic field improves transfection efficiency via complement and coagulation cascades. J. Mater. Chem. B 2019, 7, 4207–4216.

    CAS  Google Scholar 

  42. Du, M.; Chen, Y. H.; Tu, J. W.; Liufu, C.; Yu, J. S.; Yuan, Z.; Gong, X. J.; Chen, Z. Y. Ultrasound responsive magnetic mesoporous silica nanoparticle-loaded microbubbles for efficient gene delivery. ACS Biomater. Sci. Eng. 2020, 6, 2904–2912.

    CAS  Google Scholar 

  43. Pan, J.; Hu, P.; Guo, Y. D.; Hao, J. N.; Ni, D. L.; Xu, Y. Y.; Bao, Q. Q.; Yao, H. L.; Wei, C. Y.; Wu, Q. S. et al. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano 2020, 14, 1033–1044.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to National Natural Science Foundation of China (Nos. 51925305, 51873208, 51833010, and 52203183), the National Key Research and Development Program of China (No. 2021YFB3800900), and the talent cultivation project Funds for the Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (No. HRTP-[2022]52).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huapan Fang or Huayu Tian.

Electronic Supplementary Material

12274_2023_5839_MOESM1_ESM.pdf

A single magnetic nanoplatform-mediated combination therapy of immune checkpoint silencing and magnetic hyperthermia for enhanced anti-cancer immunity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Guo, X., Meng, M. et al. A single magnetic nanoplatform-mediated combination therapy of immune checkpoint silencing and magnetic hyperthermia for enhanced anti-cancer immunity. Nano Res. 16, 11206–11215 (2023). https://doi.org/10.1007/s12274-023-5839-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5839-z

Keywords

Navigation