Skip to main content
Log in

Trace ruthenium promoted dual-reconstruction of CoFeP@C/NF for activating overall water splitting performance beyond precious-metals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

At present, Ru dopants mainly enhance electrocatalytic performance by inducing strain, vacancy, local electron difference, and synergy. Surprisingly, this work innovatively proposes that trace Ru atoms induce dual-reconstruction of phosphide by regulating the electronic configuration and proportion of Co-P/Co-O species, and ultimately activate superb electrocatalytic performance. Specifically, Ru-CoFeP@C/nickel foam (NF) is reconstructed to generate hydrophilic Co(OH)2 nanosheets during the hydrogen evolution reaction (HER) process, further accelerating the alkaline HER kinetics of phosphide. And the as-formed CoOOH during the oxygen evolution reaction (OER) process directly accelerates the oxygen overflow efficiency. As expected, the overpotential at 100 mA·cm−2 (η100) values of the reconstructed Ru-CoFeP@C/NF are 0.104 and 0.257 V for HER and OER, which are greatly lower than that of Pt/C-NF and RuO2-NF benchmarks, respectively. This work provides guidance for the construction of high-performance catalysts for HER and OER dual reconstruction. This work provides a new idea for the optimization of catalyst structure and electrocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quan, Q.; Zhang, Y. X.; Wang, F.; Bu, X. M.; Wang, W.; Meng, Y.; Xie, P. S.; Chen, D.; Wang, W. J.; Li, D. J. et al. Topochemical domain engineering to construct 2D mosaic heterostructure with internal electric field for high-performance overall water splitting. Nano Energy 2022, 101, 107566.

    CAS  Google Scholar 

  2. Zhang, Y.; Zhu, X. H.; Zhang, Y. Exploring heterostructured upconversion nanoparticles: From rational engineering to diverse applications. ACS Nano 2021, 15, 3709–3735.

    CAS  Google Scholar 

  3. Guo, C. Y.; Shi, Y. M.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis 2021, 42, 1287–1296.

    CAS  Google Scholar 

  4. Zeng, Y.; Zhao, M. T.; Huang, Z. H.; Zhu, W. J.; Zheng, J. X.; Jiang, Q.; Wang, Z. C.; Liang, H. F. Surface reconstruction of water splitting electrocatalysts. Adv. Energy Mater. 2022, 12, 2201713.

    CAS  Google Scholar 

  5. Xia, J. X.; Wang, B.; Di, J.; Li, Y. J.; Yang, S. Z.; Li, H. M.; Guo, S. J. Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Mater. Today 2022, 53, 217–237.

    CAS  Google Scholar 

  6. Mei, G.; Liang, H. F.; Wei, B. B.; Shi, H. H.; Ming, F. W.; Xu, X.; Wang, Z. C. Bimetallic MnCo selenide yolk shell structures for efficient overall water splitting. Electrochim. Acta, 2018, 290, 82–89.

    CAS  Google Scholar 

  7. Zhou, B.; Li, Y. Y.; Zou, Y. Q.; Chen, W.; Zhou, W.; Song, M. L.; Wu, Y. J.; Lu, Y. X.; Liu, J. L.; Wang, Y. Y. et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading. Angew. Chem., Int. Ed. 2021, 60, 22908–22914.

    CAS  Google Scholar 

  8. Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

    CAS  Google Scholar 

  9. Wen, Y. Z.; Yang, T.; Cheng, C. Q.; Zhao, X. R.; Liu, E. Z.; Yang, J. Engineering Ru(IV) charge density in Ru@RuO2 oore-shell electrocatalyst via tensile strain for efficient oxygen evolution in acidic media. Chin. J. Catal. 2020, 41, 1161–1167.

    CAS  Google Scholar 

  10. Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.

    CAS  Google Scholar 

  11. Zang, Y. P.; Liu, T. F.; Wei, P. F.; Li, H. F.; Wang, Q.; Wang, G. X.; Bao, X. H. Selective CO2 electroreduction to ethanol over a carbon-coated CuOx Catylyst. Angew. Chem., Int. Ed. 2022, 61, e202209629.

    CAS  Google Scholar 

  12. Yue, Q.; Gao, T. T.; Wu, S. W.; Yuan, H. Y.; Xiao, D. Ultrafast fabrication of robust electrocatalyst having Fe/Fe3C and CuNC for enhanced oxygen reduction reaction activity. J. Colloid Interface Sci. 2022, 605, 906–915.

    CAS  Google Scholar 

  13. Zhang, B. W.; Zhu, C. Q.; Wu, Z. S.; Stavitski, E.; Lui, Y. H.; Kim, T. H.; Liu, H.; Huang, L.; Luan, X. C.; Zhou, L. et al. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 2020, 20, 136–144.

    CAS  Google Scholar 

  14. You, M. Z.; Du, X.; Hou, X. H.; Wang, Z. Y.; Zhou, Y.; Ji, H. P.; Zhang, L. Y.; Zhang, Z. T.; Yi, S. S.; Chen, D. L. In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER. Appl. Catal. B: Environ. 2022, 317, 121729.

    CAS  Google Scholar 

  15. Yao, H. X.; Wang, X. K.; Li, K.; Li, C.; Zhang, C. H.; Zhou, J.; Cao, Z. W.; Wang, H. L.; Gu, M.; Huang, M. et al. Strong electronic coupling between ruthenium single atoms and ultrafine nanoclusters enables economical and effective hydrogen production. Appl. Catal. B: Environ. 2022, 312, 121378.

    CAS  Google Scholar 

  16. Li, C.; Jang, H.; Kim, M. G.; Hou, L. Q.; Liu, X. E.; Cho, J. Ruincorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 307, 121204.

    CAS  Google Scholar 

  17. Hou, Z. Q.; Sun, Z.; Cui, C. H.; Zhu, D. M.; Yang, Y. N.; Zhang, T. Ru coordinated ZnIn2S4 triggers local lattice-strain engineering to endow high-efficiency electrocatalyst for advanced Zn-Air batteries. Adv. Funct. Mater. 2022, 32, 2110572.

    CAS  Google Scholar 

  18. Zhou, S. Z.; Jang, H.; Qin, Q.; Li, Z. J.; Gyu Kim, M.; Ji, X. Q.; Liu, X. E.; Cho, J. Ru atom-modified Co4N-CoF2 heterojunction catalyst for high-performance alkaline hydrogen evolution. Chem. Eng. J. 2021, 414, 128865.

    CAS  Google Scholar 

  19. Zhang, Y. K.; Lin, Y. X.; Duan, T.; Song, L. Interfacial engineering of heterogeneous catalysts for electrocatalysis. Mater. Today 2021, 48, 115–134.

    CAS  Google Scholar 

  20. He, J. T.; Liu, F.; Chen, Y. K.; Liu, X. Y.; Zhang, X. L.; Zhao, L. L.; Chang, B.; Wang, J. G; Liu, H.; Zhou, W. J. Cathode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction. Chem. Eng. J. 2022, 432, 134331.

    CAS  Google Scholar 

  21. Zhang, H.; Li, H. Y.; Zhou, Y. T.; Tan, F.; Dai, R. J.; Liu, X. J.; Hu, G. Z.; Jiang, L. M.; Chen, A. R.; Wu, R. B. Heterostructured bimetallic phosphide nanowire arrays with lattice-torsion interfaces for efficient overall water splitting. J. Energy Chem. 2023, 77, 420–427.

    CAS  Google Scholar 

  22. Zhao, M.; Cheng, X. R.; Xiao, H.; Gao, J. R.; Xue, S. F.; Wang, X. X.; Wu, H. S.; Jia, J. F.; Yang, N. J. Cobalt-iron oxide/black phosphorus nanosheet heterostructure: Electrosynthesis and performance of (photo-)electrocatalytic oxygen evolution. Nano Res. 2023, 16, 6057–6066.

    CAS  Google Scholar 

  23. Cao, X. J.; Wang, T. Z.; Qin, H. Y.; Lin, G. L.; Zhao, L. H.; Jiao, L. F. Crystalline-amorphous interfaces of NiO-CrOx electrocatalysts for boosting the urea oxidation reaction. Nano Res. 2023, 16, 3665–3671.

    CAS  Google Scholar 

  24. Zeng, Y.; Cao, Z.; Liao, J. Z.; Liang, H. F.; Wei, B. B.; Xu, X.; Xu, H. W.; Zheng, J. X.; Zhu, W. J.; Cavallo, L. et al. Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B: Environ. 2021, 292, 120160.

    CAS  Google Scholar 

  25. Lei, H.; Ma, L.; Wan, Q. X.; Tan, S. Z.; Yang, B.; Wang, Z. L.; Mai, W.; Fan, H. J. Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 2022, 12, 2202522.

    CAS  Google Scholar 

  26. Huang, Z. N.; Liao, X. P.; Zhang, W. B.; Hu, J. L.; Gao, Q. S. Ceriapromoted reconstruction of Ni-based electrocatalysts toward efficient oxygen evolution. ACS Catal. 2022, 12, 13951–13960.

    CAS  Google Scholar 

  27. Song, L. L.; Zhang, X. Y.; Du, X. Y.; Zhu, S. F.; Xu, Y. X.; Wang, Y. Q. Rapid surface reconstruction strategies for oxygen evolution reactions: Chemical grafting of MXene quantum dots on Ni-Co layered double hydroxides. Phys. Chem. Chem. Phys. 2022, 24, 24902–24909.

    CAS  Google Scholar 

  28. Adegoke, K. A.; Maxakato, N. W. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coord. Chem. Rev. 2022, 457, 214389.

    CAS  Google Scholar 

  29. Nai, J. W.; Xu, X. Z.; Xie, Q. F.; Lu, G. X.; Wang, Y.; Luan, D. Y.; Tao, X. Y.; Lou, X. W. Construction of Ni(CN)2/NiSe2 heterostructures by stepwise topochemical pathways for efficient electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2104405.

    CAS  Google Scholar 

  30. Wang, L. Q.; Hao, Y. X.; Deng, L. M.; Hu, F.; Zhao, S.; Li, L. L.; Peng, S. J. Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun. 2022, 13, 5785.

    CAS  Google Scholar 

  31. He, L. Q.; Zhang, W. B.; Mo, Q. J.; Huang, W. J.; Yang, L. C.; Gao, Q. S. Molybdenum carbide-oxide heterostructures: In situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew. Chem. 2020, 132, 3572–3576.

    Google Scholar 

  32. Li, Y. H.; Peng, C. K.; Hu, H. M.; Chen, S. Y.; Choi, J. H.; Lin, Y. G.; Lee, J. M. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat. Commun. 2022, 13, 1143.

    CAS  Google Scholar 

  33. Li, Y. Y.; Guo, H. R.; Zhang, Y.; Zhang, H. T.; Zhao, J. Y.; Song, R. Hollow Mo-doped NiS. nanoarrays decorated with NiFe layered double-hydroxides for efficient and stable overall water splitting. J. Mater. Chem. A 2022, 10, 18989–18999.

    CAS  Google Scholar 

  34. Li, X. G.; Liu, C.; Fang, Z. T.; Xu, L.; Lu, C. L.; Hou, W. H. Improving the hydrogen evolution performance of self-supported hierarchical NiFe layered double hydroxide via NH3-inducing at room temperature. J. Mater. Chem. A 2022, 10, 20626–20634.

    CAS  Google Scholar 

  35. Mo, J.; Ko, Y.; Yun, Y. S.; Huh, J.; Cho, J. A carbonization/interfacial assembly-driven electroplating approach for water-splitting textile electrodes with remarkably low overpotentials and high operational stability. Energy Environ. Sci. 2022, 15, 3815–3829.

    CAS  Google Scholar 

  36. Ma, H. B.; Chen, Z. W.; Wang, Z. L.; Singh, C. V.; Jiang, Q. Interface engineering of Co/CoMoN/NF heterostructures for high-performance electrochemical overall water splitting. Adv. Sci. 2022, 9, 2105313.

    CAS  Google Scholar 

  37. Liu, S. H.; Zhang, Y. T.; Mao, X. N.; Li, L.; Zhang, Y.; Li, L. G.; Pan, Y.; Li, X. G.; Wang, L.; Shao, Q. et al. Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy Environ. Sci. 2022, 15, 1672–1681.

    Google Scholar 

  38. Lin, R. J.; Li, X. M.; Krajnc, A.; Li, Z. H.; Li, M. R.; Wang, W. P.; Zhuang, L. Z.; Smart, S.; Zhu, Z. H.; Appadoo, D. et al. Mechanochemically synthesised flexible electrodes based on bimetallic metal-organic framework glasses for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202112880.

    CAS  Google Scholar 

  39. Zeng, L. Y.; Zhao, Z. L.; Lv, F.; Xia, Z. H.; Lu, S. Y.; Li, J.; Sun, K. A.; Wang, K.; Sun, Y. J.; Huang, Q. Z. et al. Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 2022, 13, 3822.

    CAS  Google Scholar 

  40. Li, D. D.; Zhang, Q.; Shen, Z. C.; Siddharth, K.; Chen, L. J.; Shao, M. H.; Shi, Z. C. 3D hexapod-shaped Co-ZIFs-S derived co nanoparticles embedded into nitrogen and sulfur co-doped carbon decorated with ruthenium nanoparticles as efficient catalyst for rechargeable lithium oxygen battery. Nano Energy 2022, 91, 106644.

    CAS  Google Scholar 

  41. Jin, X. Y.; Jang, H.; Jarulertwathana, N.; Kim, M. G.; Hwang, S. J. Atomically thin holey two-dimensional Ru2P nanosheets for enhanced hydrogen evolution electrocatalysis. ACS Nano. 2022, 16, 16452–16461.

    CAS  Google Scholar 

  42. Fan, K.; Zou, H. Y.; Dharanipragada, N. V. R. A.; Fan, L. Z.; Inge, K.; Duan, L. L.; Zhang, B. B.; Sun, L. C. Surface and bulk reconstruction of CoW sulfides during pH-universal electrocatalytic hydrogen evolution. J. Mater. Chem. A, 2021, 9, 11359–11369.

    CAS  Google Scholar 

  43. Ji, P. X.; Yu, R. H.; Wang, P. Y.; Pan, X. L.; Jin, H. H.; Zheng, D. Y.; Chen, D.; Zhu, J. W.; Pu, Z. H.; Wu, J. S. et al. Ultra-fast and in-depth reconstruction of transition metal fluorides in electrocatalytic hydrogen evolution processes. Adv. Sci. 2022, 9, 2103567.

    CAS  Google Scholar 

  44. Huang, H. P.; Fu, L. H.; Kong, W. Q.; Ma, H. R.; Zhang, X.; Cai, J. L.; Wang, S. P.; Xie, Z. X.; Xie, S. F. Equilibrated PtIr/IrOx atomic heterojunctions on ultrafine 1D nanowires enable superior dual-electrocatalysis for overall water splitting. Small 2022, 18, 2201333.

    CAS  Google Scholar 

  45. Huang, Z. W.; Liang, J. X.; Tang, D. M.; Chen, Y. X.; Qu, W. Y.; Hu, X. L.; Chen, J. X.; Dong, Y. Y.; Xu, D. R.; Golberg, D. et al. Interplay between remote single-atom active sites triggers speedy catalytic oxidation. Chem. 2022, 8, 3008–3017.

    CAS  Google Scholar 

  46. Jiang, L. W.; Huang, Y.; Zou, Y.; Meng, C.; Xiao, Y.; Liu, H.; Wang, J. J. Boosting the stability of oxygen vacancies in α-Co(OH)2 nanosheets with coordination polyhedrons as rivets for high-performance alkaline hydrogen evolution electrocatalyst. Adv. Energy Mater. 2022, 12, 2202351.

    CAS  Google Scholar 

  47. Li, L. L.; Yu, D. S.; Li, P.; Huang, H. J.; Xie, D. Y.; Lin, C. C.; Hu, F.; Chen, H. Y.; Peng, S. J. Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy Environ. Sci. 2021, 14, 6419–6427.

    CAS  Google Scholar 

  48. Wu, F.; Yang, R.; Lu, S. S.; Du, W.; Zhang, B.; Shi, Y. M. Unveiling partial transformation and activity origin of sulfur vacancies for hydrogen evolution. ACS Energy Lett. 2022, 7, 4198–4203.

    CAS  Google Scholar 

  49. Du, K.; Zhang, L. F.; Shan, J. Q.; Guo, J. X.; Mao, J.; Yang, C. C.; Wang, C. H.; Hu, Z. P.; Ling, T. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nat. Commun. 2022, 13, 5448.

    CAS  Google Scholar 

  50. Pei, Z. H.; Lu, X. F.; Zhang, H. B.; Li, Y. X.; Luan, D. Y.; Lou, X. W. D. Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem., Int. Ed. 2022, 61, e202207537.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52072197 and 21971132), the 111 Project of China (No. D20017), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Natural Science Foundation of Shandong Province, China (No. ZR2022QE098), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant (No. ZR2020ZD09), Qingdao Postdoctoral Researcher Applied Research Project (No. 04030431060100), and Postdoctoral Innovation Project of Shandong Province (No. SDCX-ZG-20220307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunmei Du or Lei Wang.

Electronic Supplementary Material

12274_2023_5825_MOESM1_ESM.pdf

Trace ruthenium promoted dual-reconstruction of CoFeP@C/NF for activating overall water splitting performance beyond precious-metals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Liu, J., Du, Y. et al. Trace ruthenium promoted dual-reconstruction of CoFeP@C/NF for activating overall water splitting performance beyond precious-metals. Nano Res. 16, 10810–10821 (2023). https://doi.org/10.1007/s12274-023-5825-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5825-5

Keywords

Navigation