Skip to main content
Log in

Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is of great significance to develop high-temperature anhydrous proton conducting materials. Herein, we report a new strategy to significantly enhance the proton conductivity of covalent organic frameworks (COFs) through expanding the dimensionality of proton conduction. Three COF-based composites, COF-1@PA, COF-2@PA, and COF-3@PA (PA: phosphoric acid), are prepared by PA doping of three COFs with similar pore sizes but different amounts of hydrophilic groups. With the increase of hydrophilic groups, COFs can load more PA because of the enhanced hydrogen–bonding interactions between PA and the frameworks. powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) analyses show that PA can not only enter the channels of COF-3, but also insert into its 2D interlayers. This expands the proton conduction pathways from one-dimensional (1D) to three-dimensional (3D), which greatly improves the proton conductivity of COF-3. Meanwhile, the confinement effect of 1D channels and 2D layers of COF-3 also makes the hydrogen-bonded networks more orderly in COF-3@PA-30 (30 µL of PA loaded on COF-3). At 150 °C, COF-3@PA-30 exhibits an ultrahigh anhydrous proton conductivity of 1.4 S·cm−1, which is a record of anhydrous proton conductivity reported to date. This work develops a new strategy for increasing the proton conductivity of 2D COF materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wee, J. H. Applications of proton exchange membrane fuel cell systems. Renew. Sust. Energy Rev. 2007, 11, 1720–1738.

    CAS  Google Scholar 

  2. Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability. Chem. Rev. 2017, 117, 4759–1805.

    CAS  Google Scholar 

  3. Feng, K.; Liu, L.; Tang, B. B.; Li, N. W.; Wu, P. Y. Nafion-initiated ATRP of 1-vinylimidazole for preparation of proton exchange membranes. ACS Appl. Mater. Interfaces 2016, 8, 11516–11525.

    CAS  Google Scholar 

  4. Sarango-Ramírez, M. K.; Lim, D. W.; Kolokolov, D. I.; Khudozhitkov, A. E.; Stepanov, A. G.; Kitagawa, H. Superprotonic conductivity in metal-organic framework via solvent-free coordinative urea insertion. J. Am. Chem. Soc. 2020, 142, 6861–6865.

    Google Scholar 

  5. Liang, H. Q.; Guo, Y.; Shi, Y. S.; Peng, X. S.; Liang, B.; Chen, B. L. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem., Int. Ed. 2020, 59, 7732–7737.

    CAS  Google Scholar 

  6. Ye, Y. X.; Gong, L. S.; Xiang, S. C.; Zhang, Z. J.; Chen, B. L. Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mater. 2020, 32, 1907090.

    CAS  Google Scholar 

  7. Li, X. Y.; Zhang, H. C.; Hou, J.; Ou, R. W.; Zhu, Y. L.; Zhao, C.; Qian, T. Y.; Easton, C. D.; Selomulya, C.; Hill, M. R. et al. Sulfonated sub-1-nm metal-organic framework channels with ultrahigh proton selectivity. J. Am. Chem. Soc. 2020, 142, 9827–9833.

    CAS  Google Scholar 

  8. Xue, W. L.; Deng, W. H.; Chen, H.; Liu, R. H.; Taylor, J. M.; Li, Y. K.; Wang, L.; Deng, Y. H.; Li, W. H.; Wen, Y. Y. et al. MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew. Chem., Int. Ed. 2021, 60, 1290–1297.

    CAS  Google Scholar 

  9. Fan, W. D.; Ying, Y. P.; Peh, S. B.; Yuan, H. Y.; Yang, Z. Q.; Yuan, Y. D.; Shi, D. C.; Yu, X.; Kang, C. J.; Zhao, D. Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2021, 143, 17716–17723.

    CAS  Google Scholar 

  10. Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q. et al. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.

    Google Scholar 

  11. Yang, F.; Xu, G.; Dou, Y. B.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J. R.; Chen, B. L. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2017, 2, 877–883.

    CAS  Google Scholar 

  12. Xing, G. L.; Yan, T. T.; Das, S.; Ben, T.; Qiu, S. L. Synthesis of crystalline porous organic salts with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 5345–5349.

    CAS  Google Scholar 

  13. Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Strukturell definierte molekulare hypervalente Iod-Katalysatoren für intermolekulare enantioselektive Reaktionen. Angew. Chem. 2016, 128, 422–426.

    Google Scholar 

  14. Luo, J.; Wang, J. W.; Zhang, J. H.; Lai, S.; Zhong, D. C. Hydrogen-bonded organic frameworks: Design, structures and potential applications. CrystEngComm 2018, 20, 5884–5898.

    CAS  Google Scholar 

  15. Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem., Int. Ed. 2019, 58, 11160–11170.

    CAS  Google Scholar 

  16. Zhang, F. M.; Dong, L. Z.; Qin, J. S.; Guan, W.; Liu, J.; Li, S. L.; Lu, M.; Lan, Y. Q.; Su, Z. M.; Zhou, H. C. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 6183–6189.

    CAS  Google Scholar 

  17. Kim, S.; Joarder, B.; Hurd, J. A.; Zhang, J. F.; Dawson, K. W.; Gelfand, B. S.; Wong, N. E.; Shimizu, G. K. H. Achieving superprotonic conduction in metal-organic frameworks through iterative design advances. J. Am. Chem. Soc. 2018, 140, 1077–1082.

    CAS  Google Scholar 

  18. Guo, T. T.; Cheng, D. M.; Yang, J.; Xu, X. X.; Ma, J. F. Calix[4]resorcinarene-based [Co16] coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction. Chem. Commun. 2019, 55, 6277–6280.

    CAS  Google Scholar 

  19. Luo, H. B.; Ren, Q.; Wang, P.; Zhang, J.; Wang, L. F.; Ren, X. M. High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808. ACS Appl. Mater. Interfaces 2019, 11, 9164–9171.

    CAS  Google Scholar 

  20. Yusran, Y.; Fang, Q. R.; Qiu, S. L. Postsynthetic covalent modification in covalent organic frameworks. Isr. J. Chem. 2018, 58, 971–984.

    CAS  Google Scholar 

  21. Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

    Google Scholar 

  22. Jiao, J. J.; Gong, W.; Wu, X. W.; Yang, S. P.; Cui, Y. Multivariate crystalline porous materials: Synthesis, property and potential application. Coord. Chem. Rev. 2019, 385, 174–190.

    CAS  Google Scholar 

  23. Guo, Z. C.; Shi, Z. Q.; Wang, X. Y.; Li, Z. F.; Li, G. Proton conductive covalent organic frameworks. Coord. Chem. Rev. 2020, 422, 213465.

    CAS  Google Scholar 

  24. Geng, K. Y.; Arumugam, V.; Xu, H. J.; Gao, Y. N.; Jiang, D. L. Covalent organic frameworks: Polymer chemistry and functional design. Prog. Polym. Sci. 2020, 108, 101288.

    CAS  Google Scholar 

  25. Guo, J.; Jiang, D. L. Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges. ACS Cent. Sci. 2020, 6, 869–879.

    CAS  Google Scholar 

  26. Cui, D. L.; Perepichka, D. F.; MacLeod, J. M.; Rosei, F. Surface-confined single-layer covalent organic frameworks: Design, synthesis and application. Chem. Soc. Rev. 2020, 49, 2020–2038.

    CAS  Google Scholar 

  27. Beuerle, F.; Gole, B. Covalent organic frameworks and cage compounds: Design and applications of polymeric and discrete organic scaffolds. Angew. Chem., Int. Ed. 2018, 57, 4850–4878.

    CAS  Google Scholar 

  28. Alahakoon, S. B.; Diwakara, S. D.; Thompson, C. M.; Smaldone, R. A. Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 1344–1356.

    CAS  Google Scholar 

  29. Yang, C. H.; Chang, J. S.; Lee, D. J. Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. J. Taiwan Inst. Chem. Eng. 2020, 110, 79–91.

    CAS  Google Scholar 

  30. Su, Y.; Wan, Y. J.; Xu, H.; Otake, K. I.; Tang, X. H.; Huang, L. B.; Kitagawa, S.; Gu, C. Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions. J. Am. Chem. Soc. 2020, 142, 13316–13321.

    CAS  Google Scholar 

  31. Huang, X.; Sun, C.; Feng, X. Crystallinity and stability of covalent organic frameworks. Sci. China Chem. 2020, 63, 1367–1390.

    CAS  Google Scholar 

  32. Guo, Y.; Zou, X. Y.; Li, W. Z.; Hu, Y.; Jin, Z. Y.; Sun, Z.; Gong, S. C.; Guo, S. Y.; Yan, F. High-density sulfonic acid-grafted covalent organic frameworks with efficient anhydrous proton conduction. J. Mater. Chem. A 2022, 10, 6499–6507.

    CAS  Google Scholar 

  33. Lu, Z. W.; Yang, C. Y.; He, L.; Hong, J.; Huang, C. H.; Wu, T.; Wang, X.; Wu, Z. F.; Liu, X. H.; Miao, Z. X. et al. Asymmetric hydrophosphonylation of imines to construct highly stable covalent organic frameworks with efficient intrinsic proton conductivity. J. Am. Chem. Soc. 2022, 144, 9624–9633.

    CAS  Google Scholar 

  34. Sahoo, R.; Mondal, S.; Pal, S. C.; Mukherjee, D.; Das, M. C. Covalent-organic frameworks (COFs) as proton conductors. Adv. Energy Mater. 2021, 11, 2102300.

    CAS  Google Scholar 

  35. Zhong, H.; Fu, Z. H.; Taylor, J. M.; Xu, G.; Wang, R. H. Inorganic acid-impregnated covalent organic gels as high-performance proton-conductive materials at subzero temperatures. Adv. Funct. Mater. 2017, 27, 1701465.

    Google Scholar 

  36. Yang, Y.; He, X. Y.; Zhang, P. H.; Andaloussi, Y. H.; Zhang, H. L.; Jiang, Z. Y.; Chen, Y.; Ma, S. Q.; Cheng, P.; Zhang, Z. J. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew. Chem., Int. Ed. 2020, 59, 3678–3684.

    CAS  Google Scholar 

  37. Meng, Z.; Aykanat, A.; Mirica, K. A. Proton conduction in 2D azafused covalent organic frameworks. Chem. Mater. 2019, 31, 819–825.

    CAS  Google Scholar 

  38. Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. Phosphoric acid loaded azo (−N=N−) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 2014, 136, 6570–6573.

    CAS  Google Scholar 

  39. Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

    CAS  Google Scholar 

  40. Li, S.; Liu, Y. Z.; Li, L.; Liu, C. X.; Li, J. N.; Ashraf, S.; Li, P. F.; Wang, B. Enhanced proton conductivity of imidazole-doped thiophene-based covalent organic frameworks via subtle hydrogen bonding modulation. ACS Appl. Mater. Interfaces 2020, 12, 22910–22916.

    CAS  Google Scholar 

  41. Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 2016, 28, 1489–1494.

    CAS  Google Scholar 

  42. Tao, S. S.; Zhai, L. P.; Dinga Wonanke, A. D.; Addicoat, M. A.; Jiang, Q. H.; Jiang, D. L. Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nat. Commun. 2020, 11, 1981.

    CAS  Google Scholar 

  43. Chai, S. C.; Xu, F. R.; Zhang, R. C.; Wang, X. L.; Zhai, L.; Li, X.; Qian, H. J.; Wu, L. X.; Li, H. L. Hybrid liquid-crystalline electrolytes with high-temperature-stable channels for anhydrous proton conduction. J. Am. Chem. Soc. 2021, 143, 21433–21442.

    CAS  Google Scholar 

  44. Chen, S. H.; Wu, Y.; Zhang, Y.; Zhang, W. X.; Fu, Y.; Huang, W. B.; Yan, T.; Ma, H. P. Tuning proton dissociation energy in proton carrier doped 2D covalent organic frameworks for anhydrous proton conduction at elevated temperature. J. Mater. Chem. A 2020, 8, 13702–13709.

    CAS  Google Scholar 

  45. Fu, Y.; Wu, Y.; Chen, S. H.; Zhang, W. X.; Zhang, Y.; Yan, T.; Yang, B. L.; Ma, H. P. Zwitterionic covalent organic frameworks: Attractive porous host for gas separation and anhydrous proton conduction. ACS Nano 2021, 15, 19743–19755.

    CAS  Google Scholar 

  46. Li, J.; Wu, Z. Z.; Li, H.; Liang, H.; Li, S. S. Layered-structure microporous poly(benzimidazole)-loaded imidazole for non-aqueous proton conduction. New J. Chem. 2018, 42, 1604–1607.

    CAS  Google Scholar 

  47. Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; Biswal, B. P.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee, R. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A 2016, 4, 2682–2690.

    CAS  Google Scholar 

  48. Wu, X. W.; Hong, Y. L.; Xu, B. Q.; Nishiyama, Y.; Jiang, W.; Zhu, J. W.; Zhang, G.; Kitagawa, S.; Horike, S. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J. Am. Chem. Soc. 2020, 142, 14357–14364.

    CAS  Google Scholar 

  49. Shao, Z. C.; Xue, X. J.; Gao, K. X.; Chen, J. S.; Zhai, L. P.; Wen, T. Y.; Xiong, S. L.; Hou, H. W.; Mi, L. W. Sulfonated covalent organic framework packed nafion membrane with high proton conductivity for H2/O2 fuel cell applications. J. Mater. Chem. A 2023, 11, 3446–3453.

    CAS  Google Scholar 

  50. Zhang, Q. N.; Dong, S. D.; Shao, P. P.; Zhu, Y. H.; Mu, Z. J.; Sheng, D. F.; Zhang, T.; Jiang, X.; Shao, R. W.; Ren, Z. X. et al. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022, 378, 181–186.

    CAS  Google Scholar 

  51. Zhai, S. X.; Lu, Z. R.; Ai, Y. N.; Jia, X. Y.; Yang, Y. M.; Liu, X.; Tian, M.; Bian, X. M.; Lin, J.; He, S. J. High performance nanocomposite proton exchange membranes based on the nanohybrids formed by chemically bonding phosphotungstic acid with covalent organic frameworks. J. Power Sources 2023, 554, 232332.

    CAS  Google Scholar 

  52. Das, S. K.; Krishna Chandra, B.; Molla, R. A.; Sengupta, M.; Islam, S. M.; Majee, A.; Bhaumik, A. Cuo grafted triazine functionalized covalent organic framework as an efficient catalyst for C−C homo coupling reaction. Mol. Catal. 2020, 480, 110650.

    CAS  Google Scholar 

  53. Bai, L. Y.; Phua, S. Z. F.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. P.; Zhao, L. Z.; Gao, Q.; Zhao, Y. L. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 2016, 52, 4128–4131.

    CAS  Google Scholar 

  54. Mancheño, M. J.; Royuela, S.; de la cPeña, A.; Ramos, M.; Zamora, F.; Segura, J. L. Introduction to covalent organic frameworks: An advanced organic chemistry experiment. J. Chem. Educ. 2019, 96, 1745–1751.

    Google Scholar 

  55. Reitzel, K.; Jensen, H. S.; Flindt, M.; Andersen, F. Ø. Identification of dissolved nonreactive phosphorus in freshwater by precipitation with aluminum and subsequent NMR analysis. Environ. Sci. Technol. 2009, 43, 5391–5397.

    CAS  Google Scholar 

  56. Develay, S.; Tripier, R.; Le Baccon, M.; Patinec, V.; Serratrice, G.; Handel, H. Host–guest interaction between cyclen based macrotricyclic ligands and phosphate anions. A potentiometric investigation. Dalton Trans. 2006, 3418–3426.

  57. Huang, W. B.; Li, B.; Wu, Y.; Zhang, Y.; Zhang, W. X.; Chen, S. H.; Fu, Y.; Yan, T.; Ma, H. P. In situ-doped superacid in the covalent triazine framework membrane for anhydrous proton conduction in a wide temperature range from subzero to elevated temperature. ACS Appl. Mater. Interfaces 2021, 13, 13604–13612.

    CAS  Google Scholar 

  58. Dong, C.; Xu, X.; Zhang, J.; Wang, H. N.; Xiang, Y.; Zhu, H. J.; Forsyth, M.; Lu, S. F. Proton transport of porous triazole-grafted polysulfone membranes for high temperature polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2022, 47, 8492–8501.

    CAS  Google Scholar 

  59. Huang, G. Y.; Zhu, H. J.; Porcarelli, L.; García, Y.; O’Dell, L. A.; Forsyth, M. Study of ion transport in novel protic polymerized ionic liquids and composites. Macromol. Chem. Phys. 2022, 223, 2200124.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21771193 and 22275210) and Key Research and Development Projects of Shandong Province (No. 2019JZZY010331).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongming Wang, Xiyou Li or Daofeng Sun.

Electronic Supplementary Material

12274_2023_5812_MOESM1_ESM.pdf

Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Li, X., Xie, C. et al. Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks. Nano Res. 16, 10946–10955 (2023). https://doi.org/10.1007/s12274-023-5812-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5812-x

Keywords

Navigation