Skip to main content
Log in

Glioma cell membrane camouflaged cinobufotalin delivery system for combinatorial orthotopic glioblastoma therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) belongs to the deadliest primary malignancies with high mortality rate and poor prognosis. Over the past decades, less progress has been made to treat GBM, owing largely to the lack of effective chemotherapeutics and poor drug accumulation in the glioma tissue. In order to address this issue, we present an efficient biomimetic nanocomposite (Cu2−xSe-CB@MEM, CCM), consisting of Cu2−xSe nanoparticle core modified by cinobufotalin (CB), a toad venom extract, which is camouflaged with glioma cell Ln229 membrane. It is demonstrated that CB can decrease the protein activity of inosine monophosphate dehydrogenase 1 (IMPDH1), a key target correlated with prognosis, through intermolecular hydrogen bonding with amino acid residues ARG-105 and ASP-77. The glioma cell membrane-camouflage endows the CCM with blood-brain barrier penetration and homology tumor-targeted ability. The optimized cinobufotalin based chemotherapy combining with the near-infrared-II (NIR-II) irradiation shows outstanding inhibition effect to glioma cells, by blocking cell cycle and inducing apoptosis. In vivo mice bearing orthotopic Ln229 GBM treated with CCM+NIR-II (CCM+L) have significantly suppressed tumor growth and extended survival, without side effect. The glioma cell membrane camouflaged nanocomposite of Cu2−xSe and cinobufotalin with its significant anti-glioma property and well biosafety will provide novel alternatives for clinical treatment of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrom, Q. T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J. S. Corrigendum to: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-Oncol. 2020, 24, 1214.

    Google Scholar 

  2. Louis, D. N.; Perry, A.; Wesseling, P.; Brat, D. J.; Cree, I. A.; Figarella-Branger, D.; Hawkins, C.; Ng, H. K.; Pfister, S. M.; Reifenberger, G. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncol. 2021, 23, 1231–1251.

    CAS  Google Scholar 

  3. Shergalis, A.; Bankhead III, A.; Luesakul, U.; Muangsin, N.; Neamati, N. Current challenges and opportunities in treating glioblastoma. Pharmacol. Rev. 2018, 70, 412–445.

    CAS  Google Scholar 

  4. Horbinski, C.; Berger, T.; Packer, R. J.; Wen, P. Y. Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nat. Rev. Neurol. 2022, 18, 515–529.

    Google Scholar 

  5. Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M. S.; Fink, K. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316.

    CAS  Google Scholar 

  6. Li, D. C.; Zhong, X. K.; Zeng, Z. P.; Jiang, J. G.; Li, L.; Zhao, M. M.; Yang, X. Q.; Chen, J.; Zhang, B. S.; Zhao, Q. Z. et al. Application of targeted drug delivery system in Chinese medicine. J. Controlled Release 2009, 138, 103–112.

    CAS  Google Scholar 

  7. Zhang, Z. T.; Ji, Y.; Hu, N.; Yu, Q. Q.; Zhang, X. R.; Li, J.; Wu, F. L.; Xu, H. E.; Tang, Q. Y.; Li, X. L. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J. Pharm. Sci. 2022, 17, 751–766.

    Google Scholar 

  8. Meng, H. N.; Shen, M. Q.; Li, J. J.; Zhang, R. X.; Li, X.; Zhao, L.; Huang, G.; Liu, J. J. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur. J. Pharmacol. 2021, 906, 174280.

    CAS  Google Scholar 

  9. Hou, R. T.; Li, Y. H.; Luo, X. J.; Zhang, W.; Yang, H. L.; Zhang, Y. W.; Liu, J. H.; Liu, S. H.; Han, S. Y.; Liu, C. et al. ENKUR expression induced by chemically synthesized cinobufotalin suppresses malignant activities of hepatocellular carcinoma by modulating β-catenin/c-Jun/MYH9/USP7/c-Myc axis. Int. J. Biol. Sci. 2022, 18, 2553–2567.

    CAS  Google Scholar 

  10. Li, W. Q.; Pei, S. H.; Zhang, X. J.; Qi, D. F.; Zhang, W. K.; Dou, Y. Y.; Yang, R. H.; Yao, X.; Zhang, Z. S.; Xie, S. Q. et al. Cinobufotalin inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells through down-regulate β-catenin in vitro and in vivo. Eur. J. Pharmacol. 2022, 922, 174886.

    CAS  Google Scholar 

  11. Zhang, F.; Yin, Y. T.; Xu, T. T. Cinobufotalin injection combined with chemotherapy for the treatment of advanced NSCLC in China: A PRISMA-compliant meta-analysis of 29 randomized controlled trials. Medicine 2019, 98, e16969.

    CAS  Google Scholar 

  12. Chen, T.; Li, D.; Fu, Y. L.; Hu, W. Screening of QHF formula for effective ingredients from Chinese herbs and its anti-hepatic cell cancer effect in combination with chemotherapy. Chin. Med. J. 2008, 121, 363–368.

    CAS  Google Scholar 

  13. Li, X. W.; Chen, C. H.; Dai, Y.; Huang, C. Z.; Han, Q. R.; Jing, L. L.; Ma, Y.; Xu, Y. H.; Liu, Y. W.; Zhao, L. et al. Cinobufagin suppresses colorectal cancer angiogenesis by disrupting the endothelial mammalian target of rapamycin/hypoxia-inducible factor 1α axis. Cancer Sci. 2019, 110, 1724–1734.

    CAS  Google Scholar 

  14. Huang, F.; Ni, M.; Chalishazar, M. D.; Huffman, K. E.; Kim, J.; Cai, L.; Shi, X. L.; Cai, F.; Zacharias, L. G.; Ireland, A. S. et al. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab. 2018, 28, 369–382.e5.

    Google Scholar 

  15. Burrell, A. L.; Nie, C. K.; Said, M.; Simonet, J. C.; Fernández-Justel, D.; Johnson, M. C.; Quispe, J.; Buey, R. M.; Peterson, J. R.; Kollman, J. M. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat. Struct. Mol. Biol. 2022, 29, 47–58.

    CAS  Google Scholar 

  16. Liu, X. L.; Madhankumar, A. B.; Miller, P. A.; Duck, K. A.; Hafenstein, S.; Rizk, E.; Slagle-Webb, B.; Sheehan, J. M.; Connor, J. R.; Yang, Q. X. MRI contrast agent for targeting glioma: Interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro-Oncol. 2016, 18, 691–699.

    CAS  Google Scholar 

  17. Peng, C. Q.; Gao, X. F.; Xu, J.; Du, B. J.; Ning, X. H.; Tang, S. H.; Bachoo, R. M.; Yu, M. X.; Ge, W. P.; Zheng, J. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res. 2017, 10, 1366–1376.

    CAS  Google Scholar 

  18. Zhao, Z.; Nelson, A. R.; Betsholtz, C.; Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 2015, 163, 1064–1078.

    CAS  Google Scholar 

  19. Steeg, P. S. The blood-tumour barrier in cancer biology and therapy. Nat. Rev. Clin. Oncol. 2021, 18, 696–714.

    Google Scholar 

  20. Sarkaria, J. N.; Hu, L. S.; Parney, I. F.; Pafundi, D. H.; Brinkmann, D. H.; Laack, N. N.; Giannini, C.; Burns, T. C.; Kizilbash, S. H.; Laramy, J. K. et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-Oncol. 2018, 20, 184–191.

    CAS  Google Scholar 

  21. Alifieris, C.; Trafalis, D. T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015, 152, 63–82.

    CAS  Google Scholar 

  22. Van Tellingen, O.; Yetkin-Arik, B.; De Gooijer, M. C.; Wesseling, P.; Wurdinger, T.; De Vries, H. E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015, 19, 1–12.

    CAS  Google Scholar 

  23. Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    CAS  Google Scholar 

  24. Zeng, Z. L.; Pu, K. Y. Improving cancer immunotherapy by cell membrane-camouflaged nanoparticles. Adv. Funct. Mater. 2020, 30, 2004397.

    CAS  Google Scholar 

  25. Fan, Z. Y.; Li, P. Y.; Deng, J. J.; Bady, S. C.; Cheng, H. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res. 2018, 11, 5573–5583.

    CAS  Google Scholar 

  26. Wang, C. X.; Wu, B.; Wu, Y. T.; Song, X. Y.; Zhang, S. S.; Liu, Z. H. Camouflaging nanoparticles with brain metastatic tumor cell membranes: a new strategy to traverse blood-brain barrier for imaging and therapy of brain tumors. Adv. Funct. Mater. 2020, 30, 1909369.

    CAS  Google Scholar 

  27. Jia, Y. L.; Wang, X. B.; Hu, D. H.; Wang, P.; Liu, Q. H.; Zhang, X. J.; Jiang, J. Y.; Liu, X.; Sheng, Z. H.; Liu, B. et al. Phototheranostics: Active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano 2019, 13, 386–398.

    CAS  Google Scholar 

  28. Zhou, C. Y.; Zhang, L.; Sun, T.; Zhang, Y.; Liu, Y. D.; Gong, M. F.; Xu, Z. S.; Du, M. M.; Liu, Y.; Liu, G. et al. Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv. Mater. 2021, 33, 2006532.

    CAS  Google Scholar 

  29. Yin, J. H.; Pan, S. S.; Guo, X.; Gao, Y. S.; Zhu, D. Y.; Yang, Q. H.; Gao, J. J.; Zhang, C. Q.; Chen, Y. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 2021, 13, 30.

    Google Scholar 

  30. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 µm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    CAS  Google Scholar 

  31. Wu, X. Z.; Suo, Y. K.; Shi, H.; Liu, R. Q.; Wu, F. X.; Wang, T. Z.; Ma, L. N.; Liu, H. G.; Cheng, Z. Deep-tissue photothermal therapy using laser illumination at NIR-IIa window. Nano-Micro Lett. 2020, 12, 38.

    CAS  Google Scholar 

  32. Guo, B.; Sheng, Z. H.; Hu, D. H.; Liu, C. B.; Zheng, H. R.; Liu, B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 2018, 30, 1802591.

    Google Scholar 

  33. Li, S.; Zhang, Y.; Liu, X.; Tian, Y.; Cheng, Y.; Tang, L. G.; Lin, H. R. Smart NIR-II croconaine dye-peptide for enhanced photosonotheranostics of hepatocellular carcinoma. Theranostics 2022, 12, 76–86.

    CAS  Google Scholar 

  34. He, T.; Jiang, C.; He, J.; Zhang, Y. F.; He, G.; Wu, J. Y. Z.; Lin, J.; Zhou, X.; Huang, P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv. Mater. 2021, 33, 2008540.

    CAS  Google Scholar 

  35. Shao, W.; Yang, C.; Li, F. Y.; Wu, J. H.; Wang, N.; Ding, Q.; Gao, J. Q.; Ling, D. S. Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett. 2020, 12, 147.

    CAS  Google Scholar 

  36. Balakrishnan, P. B.; Ledezma, D. K.; Cano-Mejia, J.; Andricovich, J.; Palmer, E.; Patel, V. A.; Latham, P. S.; Yvon, E. S.; Villagra, A.; Fernandes, R. et al. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. Nano Res. 2022, 15, 2300–2314.

    CAS  Google Scholar 

  37. Zeng, F. T.; Tang, L. G.; Zhang, Q. Y.; Shi, C. R.; Huang, Z. C.; Nijiati, S.; Chen, X. Y.; Zhou, Z. J. Coordinating the mechanisms of action of ferroptosis and the photothermal effect for cancer theranostics. Angew. Chem., Int. Ed. 2022, 61, e202112925.

    CAS  Google Scholar 

  38. Liu, Z.; Wang, J. Q.; Qiu, K. Q.; Liao, X. X.; Rees, T. W.; Ji, L. N.; Chao, H. Fabrication of red blood cell membrane-camouflaged Cu2−xSe nanoparticles for phototherapy in the second near-infrared window. Chem. Commun. 2019, 55, 6523–6526.

    CAS  Google Scholar 

  39. Wan, H.; Zhang, Y.; Liu, Z. Y.; Xu, G. J.; Huang, G.; Ji, Y. S.; Xiong, Z. C.; Zhang, Q. Q.; Dong, J.; Zhang, W. B. et al. Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. Nanoscale 2014, 6, 8743–8753.

    CAS  Google Scholar 

  40. You, Q.; Sun, Q.; Wang, J. P.; Tan, X. X.; Pang, X. J.; Liu, L.; Yu, M.; Tan, F. P.; Li, N. A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO. Nanoscale 2017, 9, 3784–3796.

    CAS  Google Scholar 

  41. Chin, R. M.; Fu, X. D.; Pai, M. Y.; Vergnes, L.; Hwang, H.; Deng, G.; Diep, S.; Lomenick, B.; Meli, V. S.; Monsalve, G. C. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 2014, 510, 397–401.

    CAS  Google Scholar 

  42. Lomenick, B.; Hao, R.; Jonai, N.; Chin, R. M.; Aghajan, M.; Warburton, S.; Wang, J. N.; Wu, R. P.; Gomez, F.; Loo, J. A. et al. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA 2009, 106, 21984–21989.

    CAS  Google Scholar 

  43. Jafari, R.; Almqvist, H.; Axelsson, H.; Ignatushchenko, M.; Lundbäck, T.; Nordlund, P.; Molina, D. M. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 2014, 9, 2100–2122.

    CAS  Google Scholar 

  44. Liu, Z.; Chan, L.; Chen, L. Y.; Bai, Y.; Chen, T. F. Facile fabrication of near-infrared-responsive and chitosan-functionalized Cu2Se nanoparticles for cancer photothermal therapy. Chem. Asian J. 2016, 11, 3032–3039.

    CAS  Google Scholar 

  45. Li, Q.; Sun, L. H.; Hou, M. M.; Chen, Q. B.; Yang, R. H.; Zhang, L.; Xu, Z. G.; Kang, Y. J.; Xue, P. Phase-change material packaged within hollow copper sulfide nanoparticles carrying doxorubicin and chlorin e6 for fluorescence-guided trimodal therapy of cancer. ACS Appl. Mater. Interfaces 2019, 11, 417–429.

    CAS  Google Scholar 

  46. Bicker, J.; Alves, G.; Fortuna, A.; Falcão, A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: A review. Eur. J. Pharm. Biopharm. 2014, 87, 409–432.

    CAS  Google Scholar 

  47. Hanafy, A. S.; Dietrich, D.; Fricker, G.; Lamprecht, A. Blood-brain barrier models: Rationale for selection. Adv. Drug Deliv. Rev. 2021, 176, 113859.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Fund of China (Nos. 81872064 and 82272879), the Natural Science Fund of Guangdong Province, China (No. 2021A1515012465), Technology Program of Guangzhou (No. 202206010068) and Major Discipline and Academic Leader Training Program of Jiangxi Province (No. 20225BCJ23001). The authors thank Peng Zhao and Ye Song for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuhua Jiang, Peng Zhao or Ye Song.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Zhao, L., Fang, W. et al. Glioma cell membrane camouflaged cinobufotalin delivery system for combinatorial orthotopic glioblastoma therapy. Nano Res. 16, 11164–11175 (2023). https://doi.org/10.1007/s12274-023-5807-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5807-7

Keywords

Navigation