Skip to main content
Log in

Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tumor hypoxia is intimately associated with gliomas, which represents a significant threat to human health and are resistant to the first-line chemotherapeutic drug temozolomide (TMZ) due to hypoxia. In this work, to overcome TMZ resistance in orthotopic gliomas, aptamer-functionalized liposomes are manufactured to encapsulate TMZ and photothermal agent IR780, and can cross the blood-brain barrier and actively target gliomas. It is possible to employ liposomes for both fluorescence and photoacoustic imaging simultaneously due to their stability and excellent photothermal conversion capabilities. This chemo/photothermal synergistic therapeutic effect of liposomes on gliomas is demonstrated by their abilities to target orthotopic gliomas, alleviate tumor hypoxia and consequently reverse resistance of glioma cells to TMZ, thereby extending the survival time of tumor-bearing mice, making the nanoplatforms and their synergistic chemo/photothermal therapy as a potential clinical treatment for gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molinaro, A. M.; Taylor, J. W.; Wiencke, J. K.; Wrensch, M. R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 2019, 15, 405–417.

    Google Scholar 

  2. Ostrom, Q. T.; Cote, D. J.; Ascha, M.; Kruchko, C.; Barnholtz-Sloan, J. S. Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018, 4, 1254–1262.

    Google Scholar 

  3. Messaoudi, K.; Clavreul, A.; Lagarce, F. Toward an effective strategy in glioblastoma treatment. Part I:Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov. Today 2015, 20, 899–905.

    CAS  Google Scholar 

  4. Petrenko, D.; Chubarev, V.; Syzrantsev, N.; Ismail, N.; Merkulov, V.; Sologova, S.; Grigorevskikh, E.; Smolyarchuk, E.; Alyautdin, R. Temozolomide efficacy and metabolism: The implicit relevance of nanoscale delivery systems. Molecules 2022, 27, 3507.

    CAS  Google Scholar 

  5. Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of temozolomide resistance in glioblastoma-a comprehensive review. Cancer Drug Resist. 2021, 4, 17–43.

    CAS  Google Scholar 

  6. Wick, W.; Weller, M.; van den Bent, M.; Sanson, M.; Weiler, M.; von Deimling, A.; Plass, C.; Hegi, M.; Platten, M.; Reifenberger, G. MGMT testing-the challenges for biomarker-based glioma treatment. Nat. Rev. Neurol. 2014, 10, 372–385.

    CAS  Google Scholar 

  7. Yu, W.; Zhang, L. L.; Wei, Q. C.; Shao, A. W. O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front. Oncol. 2020, 9, 1547.

    Google Scholar 

  8. Quartuccio, N.; Laudicella, R.; Mapelli, P.; Guglielmo, P.; Pizzuto, D. A.; Boero, M.; Arnone, G.; Picchio, M. Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clin. Transl. Imaging 2020, 8, 11–20.

    Google Scholar 

  9. Lin, W. Z.; Wu, S. H.; Chen, X. C.; Ye, Y. L.; Weng, Y. L.; Pan, Y. H.; Chen, Z. J.; Chen, L.; Qiu, X. X.; Qiu, S. F. Characterization of hypoxia signature to evaluate the tumor immune microenvironment and predict prognosis in glioma groups. Front. Oncol. 2020, 10, 796.

    Google Scholar 

  10. Baguley, B. C. Multiple drug resistance mechanisms in cancer. Mol. Biotechnol. 2010, 46, 308–316.

    CAS  Google Scholar 

  11. Musah-Eroje, A.; Watson, S. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J. Neuro-Oncol. 2019, 142, 231–240.

    CAS  Google Scholar 

  12. Hsieh, C. H.; Lin, Y. J.; Wu, C. P.; Lee, H. T.; Shyu, W. C.; Wang, C. C. Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin. Cancer Res. 2015, 21, 460–470.

    CAS  Google Scholar 

  13. Tang, J. H.; Ma, Z. X.; Huang, G. H.; Xu, Q. F.; Xiang, Y.; Li, N. N.; Sidlauskas, K.; Zhang, E. E.; Lv, S. Q. Downregulation of HIF1α sensitizes U251 glioma cells to the temozolomide (TMZ) treatment. Exp. Cell Res. 2016, 343, 148–158.

    CAS  Google Scholar 

  14. Ge, X.; Pan, M. H.; Wang, L.; Li, W.; Jiang, C. F.; He, J.; Abouzid, K.; Liu, L. Z.; Shi, Z. M.; Jiang, B. H. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 2018, 9, 1128.

    Google Scholar 

  15. Bastola, S.; Pavlyukov, M. S.; Yamashita, D.; Ghosh, S.; Cho, H.; Kagaya, N.; Zhang, Z.; Minata, M.; Lee, Y.; Sadahiro, H. et al. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat. Commun. 2020, 11, 4660.

    CAS  Google Scholar 

  16. Wang, H.; Xue, K. F.; Yang, Y. C.; Hu, H.; Xu, J. F.; Zhang, X. In situ hypoxia-induced supramolecular perylene diimide radical anions in tumors for photothermal therapy with improved specificity. J. Am. Chem. Soc. 2022, 144, 2360–2367.

    CAS  Google Scholar 

  17. Liu, S.; Pan, X. T.; Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem., Int. Ed. 2020, 59, 5890–5900.

    CAS  Google Scholar 

  18. Wang, X. W.; Wang, X. Y.; Yue, Q. F.; Xu, H. Z.; Zhong, X. Y.; Sun, L. N.; Li, G. Q.; Gong, Y. H.; Yang, N. L.; Wang, Z. H. et al. Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. Nano Today 2021, 39, 101170.

    CAS  Google Scholar 

  19. Zhang, C.; Xia, D. L.; Liu, J. H.; Huo, D.; Jiang, X. Q.; Hu, Y. Bypassing the immunosuppression of myeloid-derived suppressor cells by reversing tumor hypoxia using a platelet-inspired platform. Adv. Funct. Mater. 2020, 30, 2000189.

    CAS  Google Scholar 

  20. Fang, C.; Wang, K.; Stephen, Z. R.; Mu, Q. X.; Kievit, F. M.; Chiu, D. T.; Press, O. W.; Zhang, M. Q. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl. Mater. Interfaces 2015, 7, 6674–6682.

    CAS  Google Scholar 

  21. Amarandi, R. M.; Ibanescu, A.; Carasevici, E.; Marin, L.; Dragoi, B. Liposomal-based formulations: A path from basic research to temozolomide delivery inside glioblastoma tissue. Pharmaceutics 2022, 14, 308.

    CAS  Google Scholar 

  22. Zhu, X. F.; Zhou, H.; Liu, Y. N.; Wen, Y. Y.; Wei, C. F.; Yu, Q. Q.; Liu, J. Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater. 2018, 82, 143–157.

    CAS  Google Scholar 

  23. Zhao, J.; Liu, P. D.; Ma, J.; Li, D. D.; Yang, H. Q.; Chen, W. B.; Jiang, Y. W. Enhancement of radiosensitization by silver nanoparticles functionalized with polyethylene glycol and aptamer As1411 for glioma irradiation therapy. Int. J. Nanomedicine 2019, 14, 9483–9496.

    CAS  Google Scholar 

  24. Ferraris, C.; Cavalli, R.; Panciani, P. P.; Battaglia, L. Overcoming the blood-brain barrier: Successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. Int. J. Nanomedicine 2020, 15, 2999–3022.

    CAS  Google Scholar 

  25. Yasaswi, P. S.; Shetty, K.; Yadav, K. S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy. J. Control. Release 2021, 336, 549–571.

    CAS  Google Scholar 

  26. Fu, W.; You, C.; Ma, L.; Li, H.; Ju, Y.; Guo, X.; Shi, S. R.; Zhang, T.; Zhou, R. H.; Lin, Y. F. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma. ACS Appl. Mater. Interfaces 2019, 11, 39525–39533.

    CAS  Google Scholar 

  27. Mojarad-Jabali, S.; Farshbaf, M.; Walker, P. R.; Hemmati, S.; Fatahi, Y.; Zakeri-Milani, P.; Sarfraz, M.; Valizadeh, H. An update on actively targeted liposomes in advanced drug delivery to glioma. Int. J. Pharm. 2021, 602, 120645.

    CAS  Google Scholar 

  28. Zhang, J. C.; Xiao, X.; Zhu, J. M.; Gao, Z. Y.; Lai, X. L.; Zhu, X. G.; Mao, G. H. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int. J. Nanomedicine 2018, 13, 3039–3051.

    CAS  Google Scholar 

  29. Ismail, M.; Yang, W.; Li, Y. F.; Chai, T. R.; Zhang, D. Y.; Du, Q. L.; Muhammad, P.; Hanif, S.; Zheng, M.; Shi, B. Y. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 2022, 287, 121608.

    CAS  Google Scholar 

  30. Arcella, A.; Palchetti, S.; Digiacomo, L.; Pozzi, D.; Capriotti, A. L.; Frati, L.; Oliva, M. A.; Tsaouli, G.; Rota, R.; Screpanti, I. et al. Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem. Neurosci. 2018, 9, 3166–3174.

    CAS  Google Scholar 

  31. Yazdian-Robati, R.; Bayat, P.; Oroojalian, F.; Zargari, M.; Ramezani, M.; Taghdisi, S. M.; Abnous, K. Therapeutic applications of AS1411 aptamer, an update review. Int. J. Biol. Macromol. 2020, 155, 1420–1431.

    CAS  Google Scholar 

  32. Moosavian, S. A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett. 2019, 448, 144–154.

    CAS  Google Scholar 

  33. Liao, Z. X.; Chuang, E. Y.; Lin, C. C.; Ho, Y. C.; Lin, K. J.; Cheng, P. Y.; Chen, K. J.; Wei, H. J.; Sung, H. W. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J. Control. Release 2015, 208, 42–51.

    CAS  Google Scholar 

  34. Li, L. Y.; Hou, J. J.; Liu, X. J.; Guo, Y. J.; Wu, Y.; Zhang, L. H.; Yang, Z. J. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 2014, 35, 3840–3850.

    CAS  Google Scholar 

  35. Wang, H.; Zhu, Z. H.; Zhang, G. L.; Lin, F. X.; Liu, Y.; Zhang, Y.; Feng, J.; Chen, W. H.; Meng, Q.; Chen, L. K. AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma therapy. J. Pharm. Sci. 2019, 108, 3684–3694.

    CAS  Google Scholar 

  36. Li, M. H.; Teh, C.; Ang, C. Y.; Tan, S. Y.; Luo, Z.; Qu, Q. Y.; Zhang, Y. Y.; Korzh, V.; Zhao, Y. L. Near-infrared light-absorptive stealth liposomes for localized photothermal ablation of tumors combined with chemotherapy. Adv. Funct. Mater. 2015, 25, 5602–5610.

    CAS  Google Scholar 

  37. Guha, S.; Shaw, S. K.; Spence, G. T.; Roland, F. M.; Smith, B. D. Clean photothermal heating and controlled release from near-infrared dye doped nanoparticles without oxygen photosensitization. Langmuir 2015, 31, 7826–7834.

    CAS  Google Scholar 

  38. Yin, N.; Wang, Y. H.; Huang, Y.; Cao, Y.; Jin, L. H.; Liu, J. H.; Zhang, T. Q.; Song, S. Y.; Liu, X. G.; Zhang, H. J. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Adv. Sci. 2023, 10, 2204937.

    CAS  Google Scholar 

  39. Yu, Y. W.; Wang, A. P.; Wang, S. Q.; Sun, Y. C.; Chu, L. X.; Zhou, L.; Yang, X. Y.; Liu, X. C.; Sha, C. J.; Sun, K. X. et al. Efficacy of temozolomide-conjugated gold nanoparticle photothermal therapy of drug-resistant glioblastoma and its mechanism study. Mol. Pharmaceut. 2022, 19, 1219–1229.

    CAS  Google Scholar 

  40. Porciani, D.; Signore, G.; Marchetti, L.; Mereghetti, P.; Nifosi, R.; Beltram, F. Two interconvertible folds modulate the activity of a DNA aptamer against transferrin receptor. Mol. Ther. Nucleic Acids 2014, 3, e144.

    CAS  Google Scholar 

  41. Nordling-David, M. M.; Yaffe, R.; Guez, D.; Meirow, H.; Last, D.; Grad, E.; Salomon, S.; Sharabi, S.; Levi-Kalisman, Y.; Golomb, G. et al. Liposomal temozolomide drug delivery using convection enhanced delivery. J. Control. Release 2017, 261, 138–146.

    CAS  Google Scholar 

  42. Fan, K. L.; Jia, X. H.; Zhou, M.; Wang, K.; Conde, J.; He, J. Y.; Tian, J.; Yan, X. Y. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 2018, 12, 4105–4115.

    CAS  Google Scholar 

  43. Fu, J. L.; Liu, M. H.; Liu, Y.; Woodbury, N. W.; Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 2012, 134, 5516–5519.

    CAS  Google Scholar 

  44. Luo, S. Y.; Wang, Y.; Shen, S. H.; Tang, P.; Liu, Z. Y.; Zhang, S.; Wu, D. C. IR780-loaded hyaluronic acid@gossypol-Fe(III)-EGCG infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy. Adv. Funct. Mater. 2021, 31, 2100954.

    CAS  Google Scholar 

  45. Kanzawa, T.; Germano, I. M.; Kondo, Y.; Ito, H.; Kyo, S.; Kondo, S. Inhibition of telomerase activity in malignant glioma cells correlates with their sensitivity to temozolomide. Br. J. Cancer 2003, 89, 922–929.

    CAS  Google Scholar 

  46. Chakravarti, A.; Erkkinen, M. G.; Nestler, U.; Stupp, R.; Mehta, M.; Aldape, K.; Gilbert, M. R.; Black, P. M.; Loeffler, J. S. Temozolomide-mediated radiation enhancement in glioblastoma: A report on underlying mechanisms. Clin. Cancer Res. 2006, 12, 4738–4746.

    CAS  Google Scholar 

  47. Zuo, H. Q.; Tao, J. X.; Shi, H.; He, J.; Zhou, Z. Y.; Zhang, C. Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater. 2018, 80, 296–307.

    CAS  Google Scholar 

  48. Zou, Y.; Wang, Y. B.; Xu, S.; Liu, Y. J.; Yin, J. L.; Lovejoy, D. B.; Zheng, M.; Liang, X. J.; Park, J. B.; Efremov, Y. M. et al. Brain co-delivery of temozolomide and cisplatin for combinatorial glioblastoma chemotherapy. Adv. Mater. 2022, 34, 2203958.

    CAS  Google Scholar 

  49. Hu, D. H.; Sheng, Z. H.; Zhu, M. T.; Wang, X. B.; Yan, F.; Liu, C. B.; Song, L.; Qian, M.; Liu, X.; Zheng, H. R. Förster resonance energy transfer-based dual-modal theranostic nanoprobe for in situ visualization of cancer photothermal therapy. Theranostics 2018, 8, 410–422.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the National Natural Science Foundation of China (Nos. 32171173, 32001074, and 82260473), the Key Research and Development Program in Ningxia Province of China (No. 2022BEG03080), the Natural Science Basic Research Plan in Ningxia Province of China (No. 2022AAC03522), the Health Commission of Ningxia Hui Autonomous Region Science and Technology Support Project for Quality Development of Medical Institutions (No. 2023-NWKYT-019), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (No. SMFA20A02), the Natural Science Basic Research Key Program of Shaanxi Province (No. 2023-JC-ZD-53), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2022JQ-201), the Fundamental Research Funds for the Central Universities (Nos. ZYTS23190 and xzy012022134), and the Beijing Xisike Clinical Oncology Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Zhan or Yonghua Zhan.

Electronic supplementary material

12274_2023_5742_MOESM1_ESM.pdf

Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Zhao, L., Li, K. et al. Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia. Nano Res. 16, 9859–9872 (2023). https://doi.org/10.1007/s12274-023-5742-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5742-7

Keywords

Navigation