Skip to main content
Log in

The development of A-DA’D-A type nonfullerene acceptors containing non-halogenated end groups

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Compared with perovskite solar cells and silicon solar cells, the excessive voltage loss (Vloss) becomes a stubborn stone that seriously hinders the further improvement of organic photovoltaic (OPV). Thus, many researchers focus on finding an effective material system to achieve high-performance OPVs with low Vloss. In recent 5 years, acceptor-donor-acceptor’-donor-acceptor (A-DA’D-A) type non-fullerene acceptors (NFAs) have attracted great attention because of their promising photovoltaic performance. Among them, A-DA’D-A type NFAs containing non-halogenated end group (NHEG) exhibit the large potential to achieve high open-circuit voltage (VOC) for the state-of-the-art OPVs, because of high-lying molecular energy levels and decreasing Vloss. In this review, we systematically summarize the recent development of A-DA’D-A type NHEG-NFAs and the impact of different NHEGs on the optoelectronic properties as well as the photovoltaic performance. In addition, we especially analyze the Vloss of NHEG-NFAs in the binary and ternary OPV devices. At last, we provide perspectives on the further molecular design and future challenges for this kind of materials as well as suggested solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, A. L.; Zhan, C. L.; Yao, J. N.; Zhou, E. J. Design of diketopyrrolopyrrole (DPP)-based small molecules for organic-solar-cell applications. Adv. Mater. 2017, 29, 1600013.

    Google Scholar 

  2. Fu, H. T.; Wang, Z. H.; Sun, Y. M. Polymer donors for high-performance non-fullerene organic solar cells. Angew. Chem., Int. Ed. 2019, 58, 4442–4453.

    CAS  Google Scholar 

  3. Yan, C. Q.; Barlow, S.; Wang, Z. H.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. W. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

    CAS  Google Scholar 

  4. Cui, Y.; Xu, Y.; Yao, H. F.; Bi, P. Q.; Hong, L.; Zhang, J. Q.; Zu, Y. F.; Zhang, T.; Qin, J. Z.; Ren, J. Z. et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

    CAS  Google Scholar 

  5. Gao, W.; Qi, F.; Peng, Z. X.; Lin, F. R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z. Q.; Lee, C. S.; Marks, T. J. et al. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor. Adv. Mater. 2022, 34, 2202089.

    CAS  Google Scholar 

  6. Wei, Y. N.; Chen, Z. H.; Lu, G. Y.; Yu, N.; Li, C. Q.; Gao, J. H.; Gu, X. B.; Hao, X. T.; Lu, G. H.; Tang, Z. et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 2022, 34, 2204718.

    CAS  Google Scholar 

  7. Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

    CAS  Google Scholar 

  8. Li, D. H.; Deng, N.; Fu, Y. W.; Guo, C. H.; Zhou, B. J.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K. et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 2023, 35, 2208211.

    CAS  Google Scholar 

  9. He, D.; Zhao, F. W.; Wang, C. R.; Lin, Y. Z. Non-radiative recombination energy losses in non-fullerene organic solar cells. Adv. Funct. Mater. 2022, 32, 2111855.

    CAS  Google Scholar 

  10. Liu, J.; Chen, S. S.; Qian, D. P.; Gautam, B.; Yang, G. F.; Zhao, J. B.; Bergqvist, J.; Zhang, F. L.; Ma, W.; Ade, H. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

    CAS  Google Scholar 

  11. Wang, X.; Fan, Y. P.; Wang, L.; Chen, C.; Li, Z. P.; Liu, R. R.; Meng, H. G.; Shao, Z. P.; Du, X. F.; Zhang, H. R. et al. Perovskite solution aging: What happened and how to inhibit. Chem 2020, 6, 1369–1378.

    CAS  Google Scholar 

  12. Chen, C.; Wang, X.; Li, Z. P.; Du, X. F.; Shao, Z. P.; Sun, X. H.; Liu, D. C.; Gao, C. Y.; Hao, L. Z.; Zhao, Q. Q. et al. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem., Int. Ed. 2022, 61, e202113932.

    CAS  Google Scholar 

  13. Sun, X. H.; Shao, Z. P.; Li, Z. P.; Liu, D. C.; Gao, C. Y.; Chen, C.; Zhang, B. Q.; Hao, L. Z.; Zhao, Q. Q.; Li, Y. M. et al. Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule 2022, 6, 850–860.

    CAS  Google Scholar 

  14. Ding, Y. J.; Guo, Q.; Geng, Y. F.; Dai, Z.; Wang, Z. B.; Chen, Z. W.; Guo, Q.; Zheng, Z.; Li, Y. F.; Zhou, E. J. A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today 2022, 46, 101586.

    CAS  Google Scholar 

  15. Zhang, B. Q.; Chen, C.; Wang, X. Z.; Du, X. F.; Liu, D. C.; Sun, X. H.; Li, Z. P.; Hao, L. Z.; Gao, C. Y.; Li, Y. M. et al. A multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202213478.

    CAS  Google Scholar 

  16. Wang, J.; Chen, H. B.; Xu, X. Y.; Ma, Z. F.; Zhang, Z.; Li, C. X.; Yang, Y.; Wang, J.; Zhao, Y.; Zhang, M. T. et al. An acceptor with an asymmetric and extended conjugated backbone for high-efficiency organic solar cells with low nonradiative energy loss. J. Mater. Chem. A 2022, 10, 16714–16721.

    CAS  Google Scholar 

  17. Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H. Understanding energy loss in organic solar cells: Toward a new efficiency regime. Joule 2018, 2, 25–35.

    CAS  Google Scholar 

  18. Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138.

    CAS  Google Scholar 

  19. Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 2011, 133, 4625–4631.

    CAS  Google Scholar 

  20. Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 2013, 25, 4766–4771.

    CAS  Google Scholar 

  21. Lin, Y. Z.; Li, Y. F.; Zhan, X. W. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012, 41, 4245–4272.

    CAS  Google Scholar 

  22. Zhang, F. L.; Inganäs, O.; Zhou, Y. H.; Vandewal, K. Development of polymer-fullerene solar cells. Nat. Sci. Rev. 2016, 3, 222–239.

    CAS  Google Scholar 

  23. Zhao, J. B.; Li, Y. K.; Yang, G. F.; Jiang, K.; Lin, H. R.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027.

    CAS  Google Scholar 

  24. Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    CAS  Google Scholar 

  25. Liu, F. C.; Hou, T. Y.; Xu, X. F.; Sun, L. Y.; Zhou, J. W.; Zhao, X. G.; Zhang, S. M. Recent advances in nonfullerene acceptors for organic solar cells. Macromol. Rapid Commun. 2018, 39, 1700555.

    Google Scholar 

  26. Wei, Q. Y.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H. G.; Zou, Y. P. A-DA’D-A non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 2020, 63, 1352–1366.

    CAS  Google Scholar 

  27. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    CAS  Google Scholar 

  28. Cui, Y.; Yao, H. F.; Zhang, J. Q.; Xian, K. H.; Zhang, T.; Hong, L.; Wang, Y. M.; Xu, Y.; Ma, K. Q.; An, C. B. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205.

    CAS  Google Scholar 

  29. Zhu, C.; Yuan, J.; Cai, F. F.; Meng, L.; Zhang, H. T.; Chen, H. G.; Li, J.; Qiu, B. B.; Peng, H. J.; Chen, S. S. et al. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ. Sci. 2020, 13, 2459–2466.

    CAS  Google Scholar 

  30. Cai, Y. H.; Li, Y.; Wang, R.; Wu, H. B.; Chen, Z. H.; Zhang, J.; Ma, Z. F.; Hao, X. T.; Zhao, Y.; Zhang, C. F. et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.

    CAS  Google Scholar 

  31. Liu, Q. S.; Jiang, Y. F.; Jin, K; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    CAS  Google Scholar 

  32. Jin, K.; Xiao, Z.; Ding, L. M. 18.69% PCE from organic solar cells. J. Semicond. 2021, 42, 060502.

    Google Scholar 

  33. Li, S. S.; Ye, L.; Zhao, W. C.; Zhang, S. Q.; Mukherjee, S.; Ade, H.; Hou, J. H. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429.

    CAS  Google Scholar 

  34. Lin, Y. Z.; He, Q.; Zhao, F. W.; Huo, L. J.; Mai, J.; Lu, X. H.; Su, C. J.; Li, T. F.; Wang, J. Y.; Zhu, J. S. et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 2016, 138, 2973–2976.

    CAS  Google Scholar 

  35. Zhang, Y. D.; Ji, Y. T.; Zhang, Y. Y.; Zhang, W. Q.; Bai, H. L.; Du, M. Z.; Wu, H.; Guo, Q.; Zhou, E. J. Recent progress of Y6-derived asymmetric fused ring electron acceptors. Adv. Funct. Mater. 2022, 32, 2205115.

    CAS  Google Scholar 

  36. Li, S. X.; Li, C. Z.; Shi, M. M.; Chen, H. Z. New phase for organic solar cell research: Emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554–1567.

    CAS  Google Scholar 

  37. Liu, W.; Xu, X.; Yuan, J.; Leclerc, M.; Zou, Y. P.; Li, Y. F. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett. 2021, 6, 598–608.

    CAS  Google Scholar 

  38. Yu, H.; Ma, R. J.; Xiao, Y. Q.; Zhang, J. Q.; Liu, T.; Luo, Z. H.; Chen, Y. Z.; Bai, F. J.; Lu, X. H.; Yan, H. et al. Improved organic solar cell efficiency based on the regulation of an alkyl chain on chlorinated non-fullerene acceptors. Mater. Chem. Front. 2020, 4, 2428–2434.

    CAS  Google Scholar 

  39. Li, T. F.; Wang, K.; Cai, G. L.; Li, Y. W.; Liu, H.; Jia, Y. X.; Zhang, Z. Z.; Lu, X. H.; Yang, Y.; Lin, Y. Z. Asymmetric glycolated substitution for enhanced permittivity and ecocompatibility of high-performance photovoltaic electron acceptor. JACS Au 2021, 1, 1733–1742.

    CAS  Google Scholar 

  40. Jia, Z. R.; Qin, S. C.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J. Y.; Li, X. J.; He, Y. K.; Lai, W. B.; Li, N. et al. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun. 2021, 12, 178.

    CAS  Google Scholar 

  41. Feng, L. L.; Yuan, J.; Zhang, Z. Z.; Peng, H. J.; Zhang, Z. G.; Xu, S. T.; Liu, Y.; Li, Y. F.; Zou, Y. P. Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 31985–31992.

    CAS  Google Scholar 

  42. Liu, K. K.; Xu, X. P.; Wang, J. L.; Zhang, C.; Ge, G. Y.; Zhuang, F. D.; Zhang, H. J.; Yang, C.; Peng, Q.; Pei, J. Achieving high-performance non-halogenated nonfullerene acceptor-based organic solar cells with 13.7% efficiency via a synergistic strategy of an indacenodithieno[3,2-b]selenophene core unit and non-halogenated thiophene-based terminal group. J. Mater. Chem. A 2019, 7, 24389–24399.

    CAS  Google Scholar 

  43. Zhou, J.; He, Z.; Sun, Y.; Tang, A.; Guo, Q.; Zhou, E. Organic photovoltaic cells based on nonhalogenated polymer donors and nonhalogenated A-DA’D-A-type nonfullerene acceptors with high VOC and low nonradiative voltage loss. ACS Appl. Mater. Interfaces 2022, 14, 41296–41303.

    CAS  Google Scholar 

  44. Zhan, L. L.; Li, S. X.; Lau, T. K.; Cui, Y.; Lu, X. H.; Shi, M. M.; Li, C. Z.; Li, H. Y.; Hou, J. H.; Chen, H. Z. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 2020, 13, 635–645.

    CAS  Google Scholar 

  45. Pan, J. X.; Shi, Y. N.; Yu, J. W.; Zhang, H.; Liu, Y. N.; Zhang, J. Q.; Gao, F.; Yu, X.; Lu, K.; Wei, Z. X. π-extended nonfullerene acceptors for efficient organic solar cells with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49 eV. ACS Appl. Mater. Interfaces 2021, 13, 22531–22539.

    CAS  Google Scholar 

  46. Ma, X. L.; Luo, M.; Gao, W.; Yuan, J.; An, Q. S.; Zhang, M.; Hu, Z. H.; Gao, J. H.; Wang, J. X.; Zou, Y. P. et al. Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 2019, 7, 7843–7851.

    CAS  Google Scholar 

  47. Yin, Y. L.; Zhan, L. L.; Liu, M.; Yang, C. Q.; Guo, F. Y.; Liu, Y.; Gao, S. Y.; Zhao, L. C.; Chen, H. Z.; Zhang, Y. Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor. Nano Energy 2021, 90, 106538.

    CAS  Google Scholar 

  48. Zhang, Y. H.; Cai, G. L.; Li, Y. W.; Zhang, Z. Z.; Li, T. F.; Zuo, X.; Lu, X. H.; Lin, Y. Z. An electron acceptor analogue for lowering trap density in organic solar cells. Adv. Mater. 2021, 33, 2008134.

    CAS  Google Scholar 

  49. Gao, X.; Ma, X. L.; Liu, Z. F.; Gao, J. X.; Qi, Q. C.; Yu, Y.; Gao, Y.; Ma, Z. F.; Ye, L.; Min, J. et al. Novel third components with (Thio)barbituric acid as the end groups improving the efficiency of ternary solar cells. ACS Appl. Mater. Interfaces 2022, 14, 23701–23708.

    CAS  Google Scholar 

  50. Lv, J. F.; Chen, Y. H.; Guo, X.; Qiu, J. J.; Zhang, Z. L.; Wang, J. Q.; Liang, H. Y.; Zhang, L.; Zhu, L.; Liu, F. et al. A novel A-DA’D-A bifunctional small molecule for organic solar cell applications with impressive photovoltaic performance. J. Mater. Chem. A 2022, 10, 16497–16505.

    CAS  Google Scholar 

  51. Xu, X.; Sun, C. Y.; Jing, J. H.; Niu, T. Q.; Wu, X.; Zhang, K.; Huang, F.; Xu, Q. H.; Yuan, J.; Lu, X. H. et al. High-performance ternary organic solar cells enabled by introducing a new A-DA’D-A guest acceptor with higher-lying LUMO level. ACS Appl. Mater. Interfaces 2022, 14, 36582–36591.

    CAS  Google Scholar 

  52. Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: The importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 2016, 49, 2424–2434.

    CAS  Google Scholar 

  53. Liu, Y. H.; Liu, B. W.; Ma, C. Q.; Huang, F.; Feng, G. T.; Chen, H. Z.; Hou, J. H.; Yan, L. P.; Wei, Q. Y.; Luo, Q. et al. Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 2022, 65, 1457–1497.

    CAS  Google Scholar 

  54. Liang, Q. J.; Chang, Y. X.; Liang, C. W.; Zhu, H. L.; Guo, Z. B.; Liu, J. G. Application of crystallization kinetics strategy in morphology control of solar cells based on nonfullerene blends. Acta Phys. Chim. Sin. 2023, 39, 2212006.

    Google Scholar 

  55. Nie, Q. L.; Tang, A. L.; Guo, Q.; Zhou, E. J. Benzothiadiazole-based non-fullerene acceptors. Nano Energy 2021, 87, 106174.

    CAS  Google Scholar 

  56. Cong, P. Q.; Wang, Z. T.; Geng, Y. F.; Meng, Y. H.; Meng, C.; Chen, L.; Tang, A. L.; Zhou, E. J. Benzothiadiazole-based polymer donors. Nano Energy 2023, 105, 108017.

    CAS  Google Scholar 

  57. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, C. J.; Lau, T. K.; Zhang, G. C.; Lu, X. H.; Yip, H. L.; So, S. K.; Beaupré, S. et al. Fused benzothiadiazole: A building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv. Mater. 2019, 31, 1807577.

    Google Scholar 

  58. Tao, L. P.; Liu, X. H.; Deng, C. B.; Zhang, W. J.; Song, W. J. Highly efficient nonfullerene acceptor with sulfonyl-based ending groups. ACS Appl. Mater. Interfaces 2020, 12, 49659–49665.

    CAS  Google Scholar 

  59. Xiao, J. B.; Yan, T. T.; Lei, T.; Li, Y. B.; Han, Y. F.; Cao, L.; Song, W.; Tan, S. T.; Ge, Z. Y. Organic solar cells based on non-fullerene acceptors of nine fused-ring by modifying end groups. Org. Electron. 2020, 81, 105662.

    Google Scholar 

  60. Lu, H.; Liu, W. X.; Jin, H.; Huang, H.; Tang, Z.; Bo, Z. S. High-efficiency organic solar cells with reduced nonradiative voltage loss enabled by a highly emissive narrow bandgap fused ring acceptor. Adv. Funct. Mater. 2022, 32, 2107756.

    CAS  Google Scholar 

  61. Lai, H. J.; Liu, L. Z.; Zheng, N.; Han, L.; He, F. Push or pull electrons: Acetoxy and carbomethoxy-substituted isomerisms in organic solar cell acceptors. J. Phys. Chem. Lett. 2021, 12, 4666–4673.

    CAS  Google Scholar 

  62. Lee, S.; Park, G.; Jeong, M.; Lee, B.; Jeong, S.; Park, J.; Cho, Y.; Noh, S. M.; Yang, C. γ-ester-functionalized 1,1-dicyanomethylene-3-indanone end-capped nonfullerene acceptors for high-performance, annealing-free organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 33614–33625.

    CAS  Google Scholar 

  63. Wang, T.; An, R. Q.; Cao, M. Q.; Shu, H. Y.; Wu, X. F.; Tong, H.; Wang, L. X. Nonfullerene acceptors with cyano-modified terminal groups for organic solar cells: Effect of substitution position on photovoltaic properties. Dyes Pigm. 2022, 206, 110661.

    CAS  Google Scholar 

  64. Li, G. P.; Zhang, X. H.; Jones, L. O.; Alzola, J. M.; Mukherjee, S.; Feng, L. W.; Zhu, W. G.; Stern, C. L.; Huang, W.; Yu, J. S. et al. Systematic merging of nonfullerene acceptor π-extension and tetrafluorination strategies affords polymer solar cells with > 16% efficiency. J. Am. Chem. Soc. 2021, 143, 6123–6139.

    CAS  Google Scholar 

  65. Zhang, X. H.; Li, G. P.; Mukherjee, S.; Huang, W.; Zheng, D.; Feng, L. W.; Chen, Y.; Wu, J. L.; Sangwan, V. K.; Hersam, M. C. et al. Systematically controlling acceptor fluorination optimizes hierarchical morphology, vertical phase separation, and efficiency in non-fullerene organic solar cells. Adv. Energy Mater. 2022, 12, 2102172.

    CAS  Google Scholar 

  66. Qin, R.; Wang, D.; Zhou, G. Q.; Yu, Z. P.; Li, S. X.; Li, Y. H.; Liu, Z. X.; Zhu, H. M.; Shi, M. M.; Lu, X. H. et al. Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. J. Mater. Chem. A 2019, 7, 27632–27639.

    CAS  Google Scholar 

  67. Xie, M. L.; Shi, Y. N.; Zhang, H.; Pan, J. X.; Zhang, J. Q.; Wei, Z. X.; Lu, K. Aryl-substituted-indanone end-capped nonfullerene acceptors for organic solar cells with a low nonradiative loss. Chem. Commun. 2022, 58, 4877–4880.

    CAS  Google Scholar 

  68. Sun, C. Z.; Lai, X.; Rehman, T.; Lai, H. J.; Ke, C. X.; Shen, X. Y.; Zhu, Y. L.; Tian, L. L.; He, F. Benzonitrile-functionalized non-fullerene acceptors for organic solar cells with low non-radiative loss. J. Mater. Chem. C 2022, 10, 17174–17181.

    CAS  Google Scholar 

  69. Hai, J. F.; Luo, S. W.; Yu, H.; Chen, H. G.; Lu, Z. H.; Li, L.; Zou, Y. P.; Yan, H. Achieving ultra-narrow bandgap non-halogenated non-fullerene acceptors via vinylene π-bridges for efficient organic solar cells. Mater. Adv. 2021, 2, 2132–2140.

    CAS  Google Scholar 

  70. Xiao, B.; Tang, A. L.; Zhang, J. Q.; Mahmood, A.; Wei, Z. X.; Zhou, E. J. Achievement of high VOC of 1.02 V for P3HT-based organic solar cell using a benzotriazole-containing non-fullerene acceptor. Adv. Energy Mater. 2017, 7, 1602229.

    Google Scholar 

  71. Xiao, B.; Tang, A.; Yang, J.; Wei, Z.; Zhou, E. P3HT-based photovoltaic cells with a high VOC of 1.22 V by using a benzotriazole-containing nonfullerene acceptor end-capped with thiazolidine-2,4-dione. ACS Macro Lett 2017, 6, 410–414.

    CAS  Google Scholar 

  72. Tang, A. L.; Xiao, B.; Wang, Y. M.; Gao, F.; Tajima, K.; Bin, H.; Zhang, Z. G.; Li, Y. F.; Wei, Z. X.; Zhou, E. J. Simultaneously achieved high open-circuit voltage and efficient charge generation by fine-tuning charge-transfer driving force in nonfullerene polymer solar cells. Adv. Funct. Mater. 2018, 28, 1704507.

    Google Scholar 

  73. Yuan, J.; Huang, T. Y.; Cheng, P.; Zou, Y. P.; Zhang, H. T.; Yang, J. L.; Chang, S. Y.; Zhang, Z. Z.; Huang, W. C.; Wang, R. et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570.

    CAS  Google Scholar 

  74. Luo, M.; Zhou, L. Y.; Yuan, J.; Zhu, C.; Cai, F. F.; Hai, J. F.; Zou, Y. P. A new non-fullerene acceptor based on the heptacyclic benzotriazole unit for efficient organic solar cells. J. Energy Chem. 2020, 42, 169–173.

    Google Scholar 

  75. Zhang, Y. Q.; Cai, F. F.; Yuan, J.; Wei, Q. Y.; Zhou, L. Y.; Qiu, B. B.; Hu, Y. B.; Li, Y. F.; Peng, H. J.; Zou, Y. P. A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency. Phys. Chem. Chem. Phys. 2019, 21, 26557–26563.

    CAS  Google Scholar 

  76. Li, C.; Lu, G. K.; Ryu, H. S.; Sun, X. B.; Woo, H. Y.; Sun, Y. M. Effect of terminal electron-withdrawing group on the photovoltaic performance of asymmetric fused-ring electron acceptors. ACS Appl. Mater. Interfaces 2022, 14, 43207–43214.

    CAS  Google Scholar 

  77. Yang, H.; Bao, S. N.; Cui, N. Z.; Fan, H. Y.; Hu, K. W.; Cui, C. H.; Li, Y. F. Morphology optimization of the photoactive layer through crystallinity and miscibility regulation for high-performance polymer solar cells. Angew. Chem., Int. Ed. 2023, 62, e202216338.

    CAS  Google Scholar 

  78. Yang, J.; Geng, Y. F.; Li, J. F.; Zhao, B. M.; Guo, Q.; Zhou, E. J. A-DA’D-A-type non-fullerene acceptors containing a fused heptacyclic ring for poly(3-hexylthiophene)-based polymer solar cells. J. Phys. Chem. C 2020, 124, 24616–24623.

    CAS  Google Scholar 

  79. Xiao, Y. Z.; He, Z. H.; Jiang, H.; Zuo, K. Y.; Guo, Q.; Geng, Y. F.; Liu, Y. L.; Zhou, E. J. Application of A-DA’D-A non-fullerene acceptor with benzotriazole core in poly(3-hexylthiophene)-based organic solar cells. Dyes Pigm. 2022, 204, 110375.

    CAS  Google Scholar 

  80. Firdaus, Y.; He, Q.; Muliani, L.; Rosa, E. S.; Heeney, M.; Anthopoulos, T. D. Charge transport and recombination in wide-bandgap Y6 derivatives-based organic solar cells. Adv. Nat. Sci. Nanosci. Nanotechnol. 2022, 13, 025001.

    Google Scholar 

Download references

Acknowledgements

The authors thank the support from the National Natural Science Foundation of China (No. 22109142) and the Outstanding Talent Research Fund of Zhengzhou University (Nos. 32340035 and 32340100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helin Wang or Erjun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dai, T., Zhou, J. et al. The development of A-DA’D-A type nonfullerene acceptors containing non-halogenated end groups. Nano Res. 16, 12949–12961 (2023). https://doi.org/10.1007/s12274-023-5693-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5693-z

Keywords

Navigation