Skip to main content
Log in

Tannic acid assisted anti-TNF-α nanobody assembly modulating the epithelial barrier dysregulation of allergic rhinitis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The derailed nasal epithelial barrier is associated with the disorder of tight junctions (TJ) function or expression, leading to more penetration of allergens to the barrier, accompanied by the release of cytokines, which develop allergic rhinitis (AR). Considering the increasing AR disease incidence worldwide, there is still an urgent unmet medical need to develop new therapeutics. Tumor necrosis factor-alpha (TNF-α) inhibitors have been applied in treating autoimmune diseases. However, their roles in AR remain unclear. In this study, anti-TNF-α nanobody (V) was assembled with tannic acid (V/TA) as a functional antibody drug candidate which could inhibit the release of the cytokines in ovalbumin (OVA)-induced AR murine model. Upon receiving V/TA treatment, the infiltration level of inflammatory cells, and the number of mucus-secreting cells and mast cells in the nasal mucosa recovered to a relatively normal level. Preliminary mechanism of action research revealed that the efficacy of V/TA was accompanied by the restricted level of TJ molecules: zonula occluden-1 (ZO-1), occludin, claudin-1, and claudin-5. The therapeutic effect of the anti-TNF-α nanobody against AR was enhanced with the tannic acid assisted without any toxicity observed. This study supplied a promising delivery strategy of TNF-α inhibitor for the effective treatment of complicated allergic rhinitis disease, with an advantage in restoring effect on the AR-caused epithelial barrier defects than the commercial drug Infliximab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okubo, K.; Kurono, Y.; Ichimura, K.; Enomoto, T.; Okamoto, Y.; Kawauchi, H.; Suzaki, H.; Fujieda, S.; Masuyama, K. The Japanese Society of Allergology. Japanese guidelines for allergic rhinitis 2020. Allergol. Int. 2020, 69, 331–345.

    CAS  Google Scholar 

  2. Wheatley, L. M.; Togias, A. Allergic rhinitis. N. Engl. J. Med. 2015, 372, 456–463.

    Google Scholar 

  3. Kanagaratham, C.; El Ansari, Y. S.; Sallis, B. F.; Hollister, B. M. A.; Lewis, O. L.; Minnicozzi, S. C.; Oyoshi, M. K.; Rosen, R.; Nurko, S.; Fiebiger, E. et al. Omeprazole inhibits IgE-mediated mast cell activation and allergic inflammation induced by ingested allergen in mice. J. Allergy Clin. Immunol. 2020, 146, 884–893.e5.

    CAS  Google Scholar 

  4. Meng, Y. F.; Wang, C. S.; Zhang, L. Advances and novel developments in allergic rhinitis. Allergy 2020, 75, 3069–3076.

    Google Scholar 

  5. Zhang, Y.; Lan, F.; Zhang, L. Advances and highlights in allergic rhinitis. Allergy 2021, 76, 3383–3389.

    Google Scholar 

  6. Steelant, B.; Farré, R.; Wawrzyniak, P.; Belmans, J.; Dekimpe, E.; Vanheel, H.; Van Gerven, L.; Kortekaas Krohn, I.; Bullens, D. M. A.; Ceuppens, J. L. et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J. Allergy Clin. Immunol. 2016, 137, 1043–1053.e5.

    CAS  Google Scholar 

  7. Steelant, B.; Wawrzyniak, P.; Martens, K.; Jonckheere, A. C.; Pugin, B.; Schrijvers, R.; Bullens, D. M.; Vanoirbeek, J. A.; Krawczyk, K.; Dreher, A. et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J. Allergy Clin. Immunol. 2019, 144, 1242–1253.e7.

    CAS  Google Scholar 

  8. Goleva, E.; Berdyshev, E.; Leung, D. Y. M. Epithelial barrier repair and prevention of allergy. J. Clin. Invest. 2019, 129, 1463–1474.

    Google Scholar 

  9. Siti Sarah, C. O.; Md Shukri, N.; Mohd Ashari, N. S.; Wong, K. K. Zonula occludens and nasal epithelial barrier integrity in allergic rhinitis. PeerJ 2020, 8, e9834.

    Google Scholar 

  10. Wawrzyniak, P.; Wawrzyniak, M.; Wanke, K.; Sokolowska, M.; Bendelja, K.; Rückert, B.; Globinska, A.; Jakiela, B.; Kast, J. I.; Idzko, M. et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J. Allergy Clin. Immunol. 2017, 139, 93–103.

    CAS  Google Scholar 

  11. Celebi Sözener, Z.; Cevhertas, L.; Nadeau, K.; Akdis, M.; Akdis, C. A. Environmental factors in epithelial barrier dysfunction. J. Allergy Clin. Immunol. 2020, 145, 1517–1528.

    Google Scholar 

  12. Sugita, K.; Steer, C. A.; Martinez-Gonzalez, I.; Altunbulakli, C.; Morita, H.; Castro-Giner, F.; Kubo, T.; Wawrzyniak, P.; Rückert, B.; Sudo, K. et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J. Allergy Clin. Immunol. 2018, 141, 300–310.e11.

    CAS  Google Scholar 

  13. Romanowska-Próchnicka, K.; Felis-Giemza, A.; Olesińska, M.; Wojdasiewicz, P.; Paradowska-Gorycka, A.; Szukiewicz, D. The role of TNF-α and anti-TNF-α agents during preconception, pregnancy, and breastfeeding. Int. J. Mol. Sci. 2021, 22, 2922.

    Google Scholar 

  14. Iwasaki, M.; Saito, K.; Takemura, M.; Sekikawa, K.; Fujii, H.; Yamada, Y.; Wada, H.; Mizuta, K.; Seishima, M.; Ito, Y. TNF-α contributes to the development of allergic rhinitis in mice. J. Allergy Clin. Immunol. 2003, 112, 134–140.

    CAS  Google Scholar 

  15. Jang, D. I.; Lee, A. H.; Shin, H. Y.; Song, H. R.; Park, J. H.; Kang, T. B.; Lee, S. R.; Yang, S. H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719.

    CAS  Google Scholar 

  16. Steelant, B.; Seys, S. F.; Van Gerven, L.; Van Woensel, M.; Farré, R.; Wawrzyniak, P.; Kortekaas Krohn, I.; Bullens, D. M.; Talavera, K.; Raap, U. et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J. Allergy Clin. Immunol. 2018, 141, 951–963.e8.

    CAS  Google Scholar 

  17. Hu, G. Z.; Zhu, X. L.; Wen, Z.; Wu, L. H.; He, D.; Wu, X. M.; Zhou, W. Y.; Hu, W. X. Therapeutic potential of combined anti-IL-1β IgY and anti-TNF-α IgY in guinea pigs with allergic rhinitis induced by ovalbumin. Int. Immunopharmacol. 2015, 25, 155–161.

    CAS  Google Scholar 

  18. Hu, W. X.; Zhou, W. Y.; Zhu, X. L.; Wen, Z.; Wu, L. H.; Wu, X. M.; Wei, H. P.; Wang, W. D.; He, D.; Xiang, Q. et al. Anti-interleukin-1 beta/tumor necrosis factor-alpha IgY antibodies reduce pathological allergic responses in guinea pigs with allergic rhinitis. Mediators Inflamm. 2016, 2016, 3128182.

    Google Scholar 

  19. Mo, J. H.; Kang, E. K.; Quan, S. H.; Rhee, C. S.; Lee, C. H.; Kim, D. Y. Anti-tumor necrosis factor-alpha treatment reduces allergic responses in an allergic rhinitis mouse model. Allergy 2011, 66, 279–286.

    CAS  Google Scholar 

  20. Syversen, S. W.; Goll, G. L.; Jørgensen, K. K.; Sandanger, Ø.; Sexton, J.; Olsen, I. C.; Gehin, J. E.; Warren, D. J.; Brun, M. K.; Klaasen, R. A. et al. Effect of therapeutic drug monitoring vs standard therapy during infliximab induction on disease remission in patients with chronic immune-mediated inflammatory diseases: A randomized clinical trial. JAMA 2021, 325, 1744–1754.

    CAS  Google Scholar 

  21. Nencini, F.; Vultaggio, A.; Pratesi, S.; Cammelli, D.; Milla, M.; Fiori, G.; Bagnoli, S.; Prignano, F.; Romagnani, S.; Maggi, E. et al. The kinetics of antidrug antibodies, drug levels, and clinical outcomes in infliximab-exposed patients with immune-mediated disorders. J. Allergy Clin. Immunol. Pract. 2018, 6, 2065–2072.e2.

    Google Scholar 

  22. Li, R. Y.; Dai, T. T.; Tan, Y. B.; Fu, G. M.; Wan, Y.; Liu, C. M.; McClements, D. J. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions. Food Chem. 2020, 310, 125828.

    CAS  Google Scholar 

  23. Wang, X. Y.; Yan, J. J.; Wang, L. Z.; Pan, D. H.; Xu, Y. P.; Wang, F.; Sheng, J.; Li, X. X.; Yang, M. Oral delivery of anti-TNF antibody shielded by natural polyphenol-mediated supramolecular assembly for inflammatory bowel disease therapy. Theranostics 2020, 10, 10808–10822.

    CAS  Google Scholar 

  24. Xiong, H.; Wang, Z. H.; Wang, C.; Yao, J. Transforming complexity to simplicity: Protein-like nanotransformer for improving tumor drug delivery programmatically. Nano Lett. 2020, 20, 1781–1790.

    CAS  Google Scholar 

  25. Shin, M.; Lee, H. A.; Lee, M.; Shin, Y.; Song, J. J.; Kang, S. W.; Nam, D. H.; Jeon, E. J.; Cho, M.; Do, M. et al. Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nat. Biomed. Eng. 2018, 2, 304–317.

    CAS  Google Scholar 

  26. Zheng, X.; Sun, C.; Yu, R. L.; Chu, X.; Xu, J. H.; Liu, C. C.; Zhao, M. Q.; Xu, X. L.; Xia, M.; Wang, C. CD13-specific ligand facilitates Xanthatin nanomedicine targeting dendritic cells for therapy of refractory allergic rhinitis. Int. J. Pharm. 2020, 577, 119034.

    CAS  Google Scholar 

  27. Liang, X.; Cao, K. X.; Li, W.; Li, X. Q.; McClements, D. J.; Hu, K. Tannic acid-fortified zein-pectin nanoparticles: Stability, properties, antioxidant activity, and in vitro digestion. Food Res. Int. 2021, 145, 110425.

    CAS  Google Scholar 

  28. Honda, Y.; Nomoto, T.; Matsui, M.; Takemoto, H.; Kaihara, Y.; Miura, Y.; Nishiyama, N. Sequential self-assembly using tannic acid and phenylboronic acid-modified copolymers for potential protein delivery. Biomacromolecules 2020, 21, 3826–3835.

    CAS  Google Scholar 

  29. Zhang, W. C.; Zhang, Y. X.; Luo, Y. L.; Chen, S. B.; Huang, Q. Y.; Cao, Z. T.; Liang, M.; Yang, X. Z. A nanoconfined loading strategy for highly efficient siRNA delivery and cancer therapy. Nano Today 2022, 43, 101418.

    CAS  Google Scholar 

  30. Cao, Z. Y.; Li, D. D.; Zhao, L.; Liu, M. T.; Ma, P. Y.; Luo, Y. L.; Yang, X. Z. Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nat. Commun. 2022, 13, 2038.

    CAS  Google Scholar 

  31. Richter, F.; Zettlitz, K. A.; Seifert, O.; Herrmann, A.; Scheurich, P.; Pfizenmaier, K.; Kontermann, R. E. Monovalent TNF receptor 1-selective antibody with improved affinity and neutralizing activity. mAbs 2019, 11, 166–177.

    CAS  Google Scholar 

  32. Thapa, R. K.; Choi, H. G.; Kim, J. O.; Yong, C. S. Analysis and optimization of drug solubility to improve pharmacokinetics. J. Pharm. Investig. 2017, 47, 95–110.

    CAS  Google Scholar 

  33. Mendez-Barbero, N.; Yuste-Montalvo, A.; Nuñez-Borque, E.; Jensen, B. M.; Gutiérrez-Muñoz, C.; Tome-Amat, J.; Garrido-Arandia, M.; Díaz-Perales, A.; Ballesteros-Martinez, C.; Laguna, J. J. et al. The TNF-like weak inducer of the apoptosis/fibroblast growth factor-inducible molecule 14 axis mediates histamine and platelet-activating factor-induced subcutaneous vascular leakage and anaphylactic shock. J. Allergy Clin. Immunol. 2020, 145, 583–596.e6.

    CAS  Google Scholar 

  34. Park, J. Y.; Choi, J. H.; Lee, S. N.; Cho, H. J.; Ahn, J. S.; Kim, Y. B.; Park, D. Y.; Park, S. C.; Kim, S. I.; Kang, M. J. et al. Protein arginine methyltransferase 1 contributes to the development of allergic rhinitis by promoting the production of epithelial-derived cytokines. J. Allergy Clin. Immunol. 2021, 147, 1720–1731.

    CAS  Google Scholar 

  35. Eifan, A. O.; Durham, S. R. Pathogenesis of rhinitis. Clin. Exp. Allergy 2016, 46, 1139–1151.

    CAS  Google Scholar 

  36. Shamji, M. H.; Sharif, H.; Layhadi, J. A.; Zhu, R. F.; Kishore, U.; Renz, H. Diverse immune mechanisms of allergen immunotherapy for allergic rhinitis with and without asthma. J. Allergy Clin. Immunol. 2022, 149, 791–801.

    CAS  Google Scholar 

  37. Pothoven, K. L.; Schleimer, R. P. The barrier hypothesis and Oncostatin M: Restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers 2017, 5, e1341367.

    Google Scholar 

  38. Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions. Nat. Rev. Immunol. 2021, 21, 739–751.

    CAS  Google Scholar 

  39. Lee, H. J.; Kim, B.; Im, N. R.; Lee, D. Y.; Kim, H. K.; Lee, S. H.; Lee, H. M.; Lee, S. H.; Baek, S. K.; Kim, T. H. Decreased expression of E-cadherin and ZO-1 in the nasal mucosa of patients with allergic rhinitis: Altered regulation of E-cadherin by IL-4, IL-5, and TNF-alpha. Am. J. Rhinol. Allergy 2016, 30, 173–178.

    Google Scholar 

  40. Hammad, H.; Lambrecht, B. N. Barrier epithelial cells and the control of type 2 immunity. Immunity 2015, 43, 29–40.

    CAS  Google Scholar 

  41. Yazici, D.; Ogulur, I.; Kucukkase, O.; Li, M. R.; Rinaldi, A. O.; Pat, Y.; Wallimann, A.; Wawrocki, S.; Celebi Sozener, Z.; Buyuktiryaki, B. et al. Epithelial barrier hypothesis and the development of allergic and autoimmune diseases. Allergo J. Int. 2022, 31, 91–102.

    Google Scholar 

  42. Huang, Z. Q.; Liu, J.; Ong, H. H.; Yuan, T.; Zhou, X. M.; Wang, J.; Tan, K. S.; Chow, V. T.; Yang, Q. T.; Shi, L. et al. Interleukin-13 alters tight junction proteins expression thereby compromising barrier function and dampens rhinovirus induced immune responses in nasal epithelium. Front. Cell Dev. Biol. 2020, 8, 572749.

    Google Scholar 

  43. Saatian, B.; Rezaee, F.; Desando, S.; Emo, J.; Chapman, T.; Knowlden, S.; Georas, S. N. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 2013, 1, e24333.

    Google Scholar 

  44. Tokumasu, R.; Yamaga, K.; Yamazaki, Y.; Murota, H.; Suzuki, K.; Tamura, A.; Bando, K.; Furuta, Y.; Katayama, I.; Tsukita, S. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proc. Natl. Acad. Sci. USA 2016, 113, E4061–E4068.

    CAS  Google Scholar 

  45. Wang, J.; Kang, X.; Huang, Z. Q.; Shen, L.; Luo, Q.; Li, M. Y.; Luo, L. P.; Tu, J. H.; Han, M.; Ye, J. Protease-activated receptor-2 decreased zonula occlidens-1 and claudin-1 expression and induced epithelial barrier dysfunction in allergic rhinitis. Am. J. Rhinol. Allergy 2021, 35, 26–35.

    Google Scholar 

  46. Nur Husna, S. M.; Tan, H. T. T.; Md Shukri, N.; Mohd Ashari, N. S.; Wong, K. K. Nasal epithelial barrier integrity and tight junctions disruption in allergic rhinitis: Overview and pathogenic insights. Front. Immunol. 2021, 12, 663626.

    Google Scholar 

  47. Nitta, T.; Hata, M.; Gotoh, S.; Seo, Y.; Sasaki, H.; Hashimoto, N.; Furuse, M.; Tsukita, S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 2003, 161, 653–660.

    CAS  Google Scholar 

  48. Markov, A. G.; Aschenbach, J. R.; Amasheh, S. Claudin clusters as determinants of epithelial barrier function. IUBMB Life 2015, 67, 29–35.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Nos. 82130106 and 32250016), Nanjing Special Fund for Life and Health Science and Technology (No. 202110016), and Changzhou Municipal Department of Science and Technology (Nos. CZ20210010, CJ20210024, and CJ20220019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongqin Zhuang or Zi-Chun Hua.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Cao, Z., Huang, B. et al. Tannic acid assisted anti-TNF-α nanobody assembly modulating the epithelial barrier dysregulation of allergic rhinitis. Nano Res. 16, 9781–9791 (2023). https://doi.org/10.1007/s12274-023-5646-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5646-6

Keywords

Navigation