Skip to main content
Log in

Highly efficient quantum dot light-emitting diodes with the utilization of an organic emission layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The relative balance of electron and hole injection is crucial for the achievement of highly efficient quantum dot (QD) light-emitting diodes (QLEDs). Here, an inverted red QLED with the utilization of an organic emitting layer (EML) was obtained, exhibiting peak current efficiency (CE) and external quantum efficiency (EQE) of 25.63 cd/A and 23.20%, respectively. In the proposed device, the organic EML, which is a blend of fac-tris(2-phenylpyridine)iridium (Ir(ppy)3) and 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), works as an exciton harvester to capture the leaked electrons from QD layer and the injected holes from hole transporting layer (HTL), then affording energy transfer from organic EML to the adjacent QD layer so that the emission of QD is enhanced significantly. At the same time, according to the results of hole-only and electron-only devices, the insertion of organic EML promotes the hole injection, and eliminates excess electrons from QD to HTL, thus leading to a better match of hole and electron injection in the device. On the basis of the above benefits, the optimal QLED with a 10 nm organic EML offered ∼ 2-fold improvements of CE and EQE, respectively, relative to the control device. Furthermore, a better operational lifetime of QLEDs based on the organic EML was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

    Article  CAS  Google Scholar 

  2. Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

    Article  CAS  Google Scholar 

  3. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, highperformance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  CAS  Google Scholar 

  4. Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

    Article  Google Scholar 

  5. Zhang, H.; Chen, S. M.; Sun, X. W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%. ACS Nano 2018, 12, 697–704.

    Article  CAS  Google Scholar 

  6. Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.

    Article  CAS  Google Scholar 

  7. Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.

    Article  CAS  Google Scholar 

  8. Roest, A. L.; Kelly, J. J.; Vanmaekelbergh, D.; Meulenkamp, E. A. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett. 2002, 89, 036801.

    Article  CAS  Google Scholar 

  9. Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.

    Article  Google Scholar 

  10. Chen, M.; Xie, L. M.; Wei, C. T.; Yi, Y. Q. Q.; Chen, X. L.; Yang, J.; Zhuang, J. Y.; Li, F. S.; Su, W. M.; Cui, Z. High performance inkjet-printed QLEDs with 18.3% EQE: Improving interfacial contact by novel halogen-free binary solvent system. Nano Res. 2021, 14, 4125–4131.

    Article  CAS  Google Scholar 

  11. Li, Y. F.; Fan, X.; Shen, C.; Shi, X. X.; Li, P. C.; Hui, K. N.; Fan, J. P.; Kang, K.; Zhang, T.; Qian, L. Charge balance in red QLEDs for high efficiency and stability via ionic liquid doping. Adv. Funct. Mater. 2022, 32, 2203641.

    Article  CAS  Google Scholar 

  12. Lan, L. H.; Liu, B. C.; Tao, H.; Zou, J. H.; Jiang, C. B.; Xu, M.; Wang, L.; Peng, J. B.; Cao, Y. Preparation of efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye. J. Mater. Chem. C 2019, 7, 5755–5763.

    Article  CAS  Google Scholar 

  13. Chen, J. F.; Song, D. D.; Zhao, S. L.; Qiao, B.; Zheng, W. Y.; Xu, Z. Highly efficient all-solution processed blue quantum dot light-emitting diodes based on balanced charge injection achieved by double hole transport layers. Org. Electron. 2021, 94, 106169.

    Article  CAS  Google Scholar 

  14. Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.

    Article  Google Scholar 

  15. Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.

    Article  Google Scholar 

  16. Chang, J. H.; Park, P.; Jung, H.; Jeong, B. G.; Hahm, D.; Nagamine, G.; Ko, J.; Cho, J.; Padilha, L. A.; Lee, D. C. et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 2018, 12, 10231–10239.

    Article  CAS  Google Scholar 

  17. Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.

    Article  CAS  Google Scholar 

  18. Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.

    Article  CAS  Google Scholar 

  19. Lee, H.; Jeong, B. G.; Bae, W. K.; Lee, D. C.; Lim, J. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 2021, 12, 5669.

    Article  CAS  Google Scholar 

  20. Alexandrov, A.; Zvaigzne, M.; Lypenko, D.; Nabiev, I.; Samokhvalov, P. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 2020, 10, 7496.

    Article  CAS  Google Scholar 

  21. Kim, J. H.; Han, C. Y.; Lee, K. H.; An, K. S.; Song, W.; Kim, J.; Oh, M. S.; Do, Y. R.; Yang, H. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer. Chem. Mater. 2015, 27, 197–204.

    Article  CAS  Google Scholar 

  22. Wang, F. Z.; Sun, W. D.; Liu, P.; Wang, Z. B.; Zhang, J.; Wei, J. L.; Li, Y.; Hayat, T.; Alsaedi, A.; Tan, Z. A. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies. J. Phys. Chem. Lett. 2019, 10, 960–965.

    Article  CAS  Google Scholar 

  23. Zheng, W. Y.; Song, D. D.; Zhao, S. L.; Qiao, B.; Xu, Z.; Chen, J. F.; Wang, P.; Liang, Y. All-solution processed inverted QLEDs with double hole transport layers and thermal activated delay fluorescent dopant as energy transfer medium. Org. Electron. 2020, 77, 105544.

    Article  CAS  Google Scholar 

  24. Yi, Y. Q. Q.; Qi, D. W.; Wei, H. H.; Xie, L. M.; Chen, Y. Y.; Yang, J.; Hu, Z. S.; Liu, Y.; Meng, X. Q.; Su, W. M. et al. Molecular design of diazo compound for carbene-mediated cross-Linking of hole-transport polymer in QLED with reduced energy barrier and improved charge balance. ACS Appl. Mater. Interfaces 2022, 14, 39149–39158.

    Article  CAS  Google Scholar 

  25. Yang, L. Q.; Li, X. F.; Yang, Q. Q.; Wang, S. M.; Tian, H. K.; Ding, J. Q.; Wang, L. X. High-performance red quantum-dot light-emitting diodes based on organic electron transporting layer. Adv. Funct. Mater. 2021, 31, 2007686.

    Article  CAS  Google Scholar 

  26. Zheng, W. Y.; Xu, Z.; Song, D. D.; Zhao, S. L.; Qiao, B.; Chen, J. F.; Wang, P.; Zheng, X. G. Enhancing the efficiency and the luminance of quantum dot light-emitting diodes by inserting a leaked electron harvesting layer with thermal-activated delayed fluorescence material. Org. Electron. 2019, 65, 357–362.

    Article  CAS  Google Scholar 

  27. Zhang, Y. N.; Liu, Y. S.; Yan, M. M.; Wei, Y.; Zhang, Q. L.; Zhang, Y. Efficient quantum-dot light-emitting diodes employing thermally activated delayed fluorescence emitters as exciton harvesters. ACS Appl. Mater. Interfaces 2018, 10, 7435–7441.

    Article  CAS  Google Scholar 

  28. Liu, G. H.; Zhou, X.; Sun, X. W.; Chen, S. M. Performance of inverted quantum dot light-emitting diodes enhanced by using phosphorescent molecules as exciton harvesters. J. Phys. Chem. C 2016, 120, 4667–4672.

    Article  CAS  Google Scholar 

  29. Mutlugun, E.; Guzelturk, B.; Abiyasa, A. P.; Gao, Y.; Sun, X. W.; Demir, H. V. Colloidal quantum dot light-emitting diodes employing phosphorescent small organic molecules as efficient exciton harvesters. J. Phys. Chem. Lett. 2014, 5, 2802–2807.

    Article  CAS  Google Scholar 

  30. Lee, S.; Hahm, D.; Yoon, S. Y.; Yang, H.; Bae, W. K.; Kwak, J. Quantum-dot and organic hybrid light-emitting diodes employing a blue common layer for simple fabrication of full-color displays. Nano Res. 2022, 15, 6477–6482.

    Article  CAS  Google Scholar 

  31. Reineke, S.; Walzer, K.; Leo, K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys. Rev. B 2007, 75, 125328.

    Article  Google Scholar 

  32. Clegg, R. M. Förster resonance energy transfer—FRET what is it, why do it, and how it’s done. Lab. Tech. Biochem. Mol. Biol. 2009, 33, 1–57.

    Article  Google Scholar 

  33. Baek, H. I.; Lee, C. Electroluminescence characteristics of n-type matrix materials doped with iridium-based green and red phosphorescent emitters. J. Appl. Phys. 2008, 103, 054510.

    Article  Google Scholar 

  34. Zhang, D. D.; Liu, Y. H.; Zhu, L. Q. Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. iScience 2022, 25, 105111.

    Article  CAS  Google Scholar 

  35. Baek, H. I.; Lee, C.; Chin, B. D. Comparison of the carrier mobility, unipolar conduction, and light emitting characteristics of phosphorescent host-dopant system. Synth. Met. 2012, 162, 2355–2360.

    Article  CAS  Google Scholar 

  36. Sanderson, S.; Philippa, B.; Vamvounis, G.; Burn, P. L.; White, R. D. Understanding charge transport in Ir(ppy)3:CBP OLED films. J. Chem. Phys. 2019, 150, 094110.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by R&D center of BOE Technology Group Co., Ltd. (No. 40009862).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Guangcai Yuan.

Electronic supplementary material

12274_2023_5638_MOESM1_ESM.pdf

Electronic Supplementary Material: Highly efficient quantum dot light-emitting diodes with the utilization of an organic emission layer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, D., Huang, W. et al. Highly efficient quantum dot light-emitting diodes with the utilization of an organic emission layer. Nano Res. 16, 10545–10551 (2023). https://doi.org/10.1007/s12274-023-5638-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5638-6

Keywords

Navigation