Skip to main content
Log in

Chiral carbon dots from glucose by room temperature alkali-assisted synthesis for electrocatalytic oxidation of tryptophan enantiomers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chiral catalysis is one of the most direct and effective approach to obtain pure optical enantiomers. Chiral carbon dots (CDs) as carbon-based chiral catalysts show great potential in chiral catalysis. Herein, we report a facile one step base-catalyzed aldol condensation to fabricate the chiral CDs from glucose at ambient temperature and pressure. The formation of chiral CDs involves the processes of isomerization and aldol condensation. These chiral CDs have been demonstrated that they have selective capacity for electrocatalytic oxidization of tryptophan enantiomers. L type of CDs (LCDs) is more likely to catalyze L-tryptophan (Trp) than D-Trp with the selective factor (/L//D) of 1.60, whereas the D type of CDs (DCDs) tends to catalyze D-Trp (/L//D: 0.63). Theoretical calculations combined with various contrast experiments (temperature and pH) demonstrate that the selectively electrocatalytic capacity of chiral CDs toward Trp isomers is due to the different hydrogen-bond interactions between chiral CDs and Trp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turek, M.; Biczak, R.; Pawlowska, B.; Różycka-Sokołowska, E.; Owsianik, K.; Marciniak, B.; Balczewski, P. The need to change the approach to the safe use of herbicides by developing chiral and environmentally friendly formulations: A series of enantioselective (R)- and (S)-phenylethylammonium chloroacetates. Green Chem. 2022, 24, 1693–1703.

    Article  CAS  Google Scholar 

  2. Arenas, M.; Martín, J.; Luis Santos, J.; Aparicio, I.; Alonso, E. Enantioselective behavior of environmental chiral pollutants: A comprehensive review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2995–3034.

    Article  CAS  Google Scholar 

  3. Zhang, H.; Lou, L. L.; Yu, K.; Liu, S. X. Advances in chiral metal-organic and covalent organic frameworks for asymmetric catalysis. Small 2021, 17, 2005686.

    Article  CAS  Google Scholar 

  4. Huang, Y. H.; Hayashi, T. Chiral diene ligands in asymmetric catalysis. Chem. Rev. 2022, 122, 14346–14404.

    Article  CAS  Google Scholar 

  5. Planas, O.; Cornella, J. Facile access to chiral non-natural amino acids. Nat. Catal. 2019, 2, 839–840.

    Article  CAS  Google Scholar 

  6. Yuan, Y. C.; Mellah, M.; Schulz, E.; David, O. R. P. Making chiral salen complexes work with organocatalysts. Chem. Rev. 2022, 122, 8841–8883.

    Article  CAS  Google Scholar 

  7. Rudroff, F.; Mihovilovic, M. D.; Gröger, H.; Snajdrova, R.; Iding, H.; Bornscheuer, U. T. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 2018, 1, 12–22.

    Article  Google Scholar 

  8. Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: Synthesis, optical properties, and emerging applications. Light: Sci. Appl. 2022, 11, 75.

    Article  Google Scholar 

  9. Ru, Y.; Ai, L.; Jia, T. T.; Liu, X. J.; Lu, S. Y.; Tang, Z. Y.; Yang, B. Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today 2020, 34, 100953.

    Article  CAS  Google Scholar 

  10. Filippini, G.; Amato, F.; Rosso, C.; Ragazzon, G.; Vega-Peñaloza, A.; Companyó, X.; Dell’Amico, L.; Bonchio, M.; Prato, M. Mapping the surface groups of amine-rich carbon dots enables covalent catalysis in aqueous media. Chem 2020, 6, 3022–3037.

    Article  CAS  Google Scholar 

  11. Liu, S.; He, Y.; Liu, Y.; Wang, S. B.; Jian, Y. J.; Li, B. X.; Xu, C. L. One-step hydrothermal synthesis of chiral carbon dots with high asymmetric catalytic activity for an enantioselective direct aldol reaction. Chem. Commun. 2021, 57, 3680–3683.

    Article  CAS  Google Scholar 

  12. Ouyang, Y.; Biniuri, Y.; Fadeev, M.; Zhang, P.; Carmieli, R.; Vázquez-González, M.; Willner, I. Aptamer-modified Cu2+-functionalized C-dots: Versatile means to improve nanozyme activities—“Aptananozymes”. J. Am. Chem. Soc. 2021, 143, 11510–11519.

    Article  CAS  Google Scholar 

  13. Zhang, M. L.; Zhang, W. R.; Fan, X.; Ma, Y. R.; Huang, H.; Wang, X. T.; Liu, Y.; Lin, H. P.; Li, Y. Y.; Tian, H. et al. Chiral carbon dots derived from serine with well-defined structure and enantioselective catalytic activity. Nano Lett. 2022, 22, 7203–7211.

    Article  CAS  Google Scholar 

  14. Wang, M.; Li, C. H.; Zhou, M. L.; Xia, Z. N.; Huang, Y. K. Natural deep eutectic solvent assisted synthesis and applications of chiral carbon dots. Green Chem. 2022, 24, 6696–6706.

    Article  CAS  Google Scholar 

  15. Di Noja, S.; Amato, F.; Zinna, F.; Di Bari, L.; Ragazzon, G.; Prato, M. Transfer of axial chirality to the nanoscale endows carbon nanodots with circularly polarized luminescence. Angew. Chem., Int. Ed. 2022, 61, e202202397.

    Article  CAS  Google Scholar 

  16. Ru, Y.; Sui, L.; Song, H. Q.; Liu, X. J.; Tang, Z. Y.; Zang, S. Q.; Yang, B.; Lu, S. Y. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem., Int. Ed. 2021, 60, 14091–14099.

    Article  CAS  Google Scholar 

  17. Zhang, M. L.; Ma, Y. R.; Wang, H. B.; Wang, B.; Zhou, Y. J.; Liu, Y.; Shao, M. W.; Huang, H.; Lu, F.; Kang, Z. H. Chiral control of carbon dots via surface modification for tuning the enzymatic activity of glucose oxidase. ACS Appl. Mater. Interfaces 2021, 13, 5877–5886.

    Article  CAS  Google Scholar 

  18. Zhang, M. L.; Wang, H. B.; Wang, B.; Ma, Y. R.; Huang, H.; Liu, Y.; Shao, M. W.; Yao, B. W.; Kang, Z. H. Maltase decorated by chiral carbon dots with inhibited enzyme activity for glucose level control. Small 2019, 15, 1901512.

    Article  CAS  Google Scholar 

  19. Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

    Article  CAS  Google Scholar 

  20. Li, L.; Li, Y. T.; Ye, Y.; Guo, R. T.; Wang, A. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 2021, 15, 6872–6885.

    Article  CAS  Google Scholar 

  21. Li, J. L.; Smith, R. L. Jr.; Xu, S. Y.; Li, D.; Yang, J. R.; Zhang, K. Q.; Shen, F. Manganese oxide as an alternative to vanadium-based catalysts for effective conversion of glucose to formic acid in water. Green Chem. 2022, 24, 315–324.

    Article  CAS  Google Scholar 

  22. Libnau, F. O.; Christy, A. A.; Kvalheim, O. M. Resolution of infrared spectra and kinetic analysis of mutarotation of D-glucose in water by sequential rank analysis. Vib. Spectrosc. 1994, 7, 139–148.

    Article  CAS  Google Scholar 

  23. Bartolomei, B.; Bogo, A.; Amato, F.; Ragazzon, G.; Prato, M. Nuclear magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws. Angew. Chem., Int. Ed. 2022, 61, e202200038.

    Article  CAS  Google Scholar 

  24. Chandra, S.; Karak, N. Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid. ACS Sustainable Chem. Eng. 2018, 6, 16412–16423.

    Article  CAS  Google Scholar 

  25. Sahoo, S.; Kalita, H.; Mohanty, S.; Nayak, S. K. Degradation study of biobased polyester-polyurethane and its nanocomposite under natural soil burial, UV radiation and hydrolytic-salt water circumstances. J. Polym. Environ. 2018, 26, 1528–1539.

    Article  CAS  Google Scholar 

  26. Hardin, N. Z.; Kocman, V.; Di Mauro, G. M.; Ravula, T.; Ramamoorthy, A. Metal-chelated polymer nanodiscs for NMR studies. Angew. Chem., Int. Ed. 2019, 58, 17246–17250.

    Article  CAS  Google Scholar 

  27. Das, A.; Kundelev, E. V.; Vedernikova, A. A.; Cherevkov, S. A.; Danilov, D. V.; Koroleva, A. V.; Zhizhin, E. V.; Tsypkin, A. N.; Litvin, A. P.; Baranov, A. V. et al. Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules. Light: Sci. Appl. 2022, 11, 92.

    Article  CAS  Google Scholar 

  28. Li, F.; Li, Y. Y.; Yang, X.; Han, X. X.; Jiao, Y.; Wei, T. T.; Yang, D. Y.; Xu, H. P.; Nie, G. J. Highly fluorescent chiral N-S-doped carbon dots from cysteine: Affecting cellular energy metabolism. Angew. Chem., Int. Ed. 2018, 57, 2377–2382.

    Article  CAS  Google Scholar 

  29. Suzuki, N.; Wang, Y. C.; Elvati, P.; Qu, Z. B.; Kim, K.; Jiang, S.; Baumeister, E.; Lee, J.; Yeom, B.; Bahng, J. H. et al. Chiral graphene quantum dots. ACS Nano 2016, 10, 1744–1755.

    Article  CAS  Google Scholar 

  30. Vázquez-Nakagawa, M.; Rodríguez-Pérez, L.; Herranz, M. A.; Martín, N. Chirality transfer from graphene quantum dots. Chem. Commun. 2016, 52, 665–668.

    Article  Google Scholar 

  31. Hu, R.; Zhai, X. C.; Ding, Y. B.; Shi, G. Y.; Zhang, M. Hybrid supraparticles of carbon dots/porphyrin for multifunctional tongue-mimic sensors. Chin. Chem. Lett. 2022, 33, 2715–2720.

    Article  CAS  Google Scholar 

  32. Gao, P. L.; Xie, Z. G.; Zheng, M. Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sens. Actuators B: Chem. 2020, 319, 128265.

    Article  CAS  Google Scholar 

  33. Hu, L. L.; Li, H.; Liu, C. A.; Song, Y. X.; Zhang, M. L.; Huang, H.; Liu, Y.; Kang, Z. H. Chiral evolution of carbon dots and the tuning of laccase activity. Nanoscale 2018, 10, 2333–2340.

    Article  CAS  Google Scholar 

  34. Souza, R. O. L.; Fabiano, D. P.; Feche, C.; Rataboul, F.; Cardoso, D.; Essayem, N. Glucose-fructose isomerisation promoted by basic hybrid catalysts. Catal. Today 2012, 195, 114–119.

    Article  CAS  Google Scholar 

  35. Lima, S.; Dias, A. S.; Lin, Z.; Brandão, P.; Ferreira, P.; Pillinger, M.; Rocha, J.; Calvino-Casilda, V.; Valente, A. A. Isomerization of D-glucose to D-fructose over metallosilicate solid bases. Appl. Catal. A: Gen. 2008, 339, 21–27.

    Article  CAS  Google Scholar 

  36. Zuo, B. J.; Wang, Q. L.; Wang, Y.; Ma, Y. D. Knoevenagel condensation over acidic zeolite. Chin. J. Catal. 2002, 23, 555–558.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Jiangsu Province (No. BE2022425), National Key R&D Program of China (Nos. 2020YFA0406104 and 2020YFA0406101), National MCF Energy R&D Program of China (No. 2018YFE0306105), the National Natural Science Foundation of China (Nos. 52271223, 52272043, 51725204, 51972216, 52202107, and 52201269), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), Key R&D program of Ningxia Hui Autonomous Region (No. 2022BEG02006), Ningxia Autonomous Region flexible introduction of science and technology innovation team (No. 2021RXTDLX08), Agricultural science and technology innovation project of Suzhou Science and Technology Development Plan (No. SNG2020074), Macau Youths Scholars Program, Collaborative Innovation Center of Suzhou Nano Science and Technology, the 111 Project, and Suzhou Key Laboratory of Functional Nano and Soft Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youyong Li or Zhenhui Kang.

Electronic Supplementary Material

12274_2023_5601_MOESM1_ESM.pdf

Chiral carbon dots from glucose by room temperature alkali-assisted synthesis for electrocatalytic oxidation of tryptophan enantiomers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Fan, X., Du, X. et al. Chiral carbon dots from glucose by room temperature alkali-assisted synthesis for electrocatalytic oxidation of tryptophan enantiomers. Nano Res. 16, 8929–8936 (2023). https://doi.org/10.1007/s12274-023-5601-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5601-6

Keywords

Navigation