Skip to main content
Log in

Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane containing methacryloyloxy and methoxy silane groups (MAPDMS)-microcapsule-SiO2 (MPMS) functional materials were prepared by constructing micro-nano hierarchical structures on the surface of MAPDMS matrix. Herein, MAPDMS@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide/dimethyloctadecyl[3-(trimethoxysilyl) propyl]ammonium chloride (MAPDMS@PGMAm/GO/QC18) self-healing microcapsules with compact multi-shell structure were synthesized and combined with nano-SiO2 to construct the hierarchical structures. Furthermore, ultraviolet (UV)/moisture dual curing mode was introduced into deep curing reaction and efficient self-healing reaction of the MPMS. The results show that the introduction of UV/moisture dual curing mode and micro-nano hierarchical structure gives MPMS functional materials excellent mechanical properties, antifouling properties, self-healing properties, and antibacterial properties. The shear strength and tensile strength of MPMS increase from 3.32 and 4.26 MPa of MAPDMS to 3.81 and 5.06 MPa, respectively. Its static contact angle increases from 115.9° of MAPDMS to 156.5°, and its slide angle decreases from 68.5° of MAPDMS to 7.8°, respectively. The antifouling performance of MPMS against seawater, soy sauce, juice, coffee, protein, and other contaminants is effectively improved compared with MAPDMS matrix. At the same time, the tensile strength and elongation at break of MPMS after healing reach 98.22% and 96.57% of those in original state, respectively. In addition, the antibacterial rates of MPMS against Escherichia coli and Staphylococcus aureus reach 99.85% and 100%, respectively. The MPMS prepared in this paper is expected to be widely used in marine antifouling, pipeline network, anti-icing, microfluidics, wearable devices, medical devices, electrochemical biosensors, and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellanger, H.; Darmanin, T.; De Givenchy, E. T.; Guittard, F. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem. Rev. 2014, 114, 2694–2716.

    CAS  Google Scholar 

  2. Wang, Z. H.; Scheres, L.; Xia, H. S.; Zuilhof, H. Developments and challenges in self-healing antifouling materials. Adv. Funct. Mater. 2020, 30, 1908098.

    CAS  Google Scholar 

  3. Ma, C. F.; Zhang, W. P.; Zhang, G. Z.; Qian, P. Y. Environmentally friendly antifouling coatings based on biodegradable polymer and natural antifoulant. ACS Sustainable Chem. Eng. 2017, 5, 6304–6309.

    CAS  Google Scholar 

  4. Zhu, B. F.; Liu, Z. H.; Liu, J.; Yang, Y. M.; Meng, Y. B.; Yu, F.; Jiang, L.; Wei, G. Y.; Zhang, Z. Preparation of fluorinated/silanized polyacrylates amphiphilic polymers and their anticorrosion and antifouling performance. Prog. Org. Coat. 2020, 140, 105510.

    CAS  Google Scholar 

  5. Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Wang, S. S.; Zhang, Y. L.; Gu, J. W. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 2022, 219, 109253.

    CAS  Google Scholar 

  6. Zhang, W.; Lu, Y. B.; Liu, J.; Li, X. P.; Li, B. A.; Wang, S. C. Preparation of re-entrant and anti-fouling PVDF composite membrane with omniphobicity for membrane distillation. J. Membrane Sci. 2020, 595, 117563.

    CAS  Google Scholar 

  7. Liu, J.; Zheng, N.; Li, Z. L.; Liu, Z.; Wang, G. Q.; Gui, L. S.; Lin, J. Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Adv. Compos. Hybrid Mater. 2022, 5, 1899–1909.

    CAS  Google Scholar 

  8. Wang, S. S.; Feng, D. Y.; Guan, H.; Guo, Y. Q.; Liu, X.; Yan, C.; Zhang, L.; Gu, J. W. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “line-plane” like hetero-structured fillers. Compos. Part A: Appl. Sci. Manuf. 2022, 157, 106911.

    CAS  Google Scholar 

  9. Xu, Y. S. H.; Li, M. H.; Liu, M. Y. Corrosion and fouling behaviors of phosphatized Q235 carbon steel coated with fluorinated polysiloxane coating. Prog. Org. Coat. 2019, 134, 177–188.

    CAS  Google Scholar 

  10. Huang, J.; Cai, Y. C.; Xue, C. Y.; Ge, J.; Zhao, H. Y.; Yu, S. H. Highly stretchable, soft, and sticky PDMS elastomer by solvothermal polymerization process. Nano Res. 2021, 14, 3636–3642.

    CAS  Google Scholar 

  11. Yang, X. T.; Zhong, X.; Zhang, J. L.; Gu, J. W. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol. 2021, 68, 209–215.

    CAS  Google Scholar 

  12. Guazzelli, E.; Perondi, F.; Criscitiello, F.; Pretti, C.; Oliva, M.; Casu, V.; Maniero, F.; Gazzera, L.; Galli, G.; Martinelli, E. New amphiphilic copolymers for PDMS-based nanocomposite films with long-term marine antifouling performance. J. Mater. Chem. B 2021, 8, 9764–9776.

    Google Scholar 

  13. Hwang, H. D.; Kim, H. J. Enhanced thermal and surface properties of waterborne UV-curable polycarbonate-based polyurethane (meth)acrylate dispersion by incorporation of polydimethylsiloxane. React. Funct. Polym. 2011, 71, 655–665.

    CAS  Google Scholar 

  14. Mac Leod, T. C. O.; Marques, R. S.; Schiavon, M. A.; Assis, M. D. An environmentally friendly triphasic catalytic system: Mn(salen) occluded in membranes based on PDMS/PVA. Appl. Catal. B: Environ. 2010, 100, 55–61.

    CAS  Google Scholar 

  15. Du, J. J.; Yuan, H. X.; Xia, H.; Kou, H. J.; Zhang, Y. Z.; Xing, W. L.; Zhang, C. Improvement of superhydrophobicity and durability of EP+PDMS/SiO2 composite coatings by adjusting laser curing powers. Mater. Chem. Phys. 2022, 289, 126428.

    CAS  Google Scholar 

  16. Yang, X. F.; Song, Y.; Jiang, Y. H.; Wang, X. L.; Yang, Y. N.; Wang, J. H.; Wang, X. J.; He, N.; Lai, G. Q.; Yu, Y. C. Fabrication and performance of UV-curable Schiff base-containing antibacterial silicone modified materials. Prog. Org. Coat. 2023, 174, 107313.

    CAS  Google Scholar 

  17. Li, C. M.; Tan, J. J.; Gu, J. W.; Qiao, L.; Zhang, B. L.; Zhang, Q. Y. Rapid and efficient synthesis of isocyanate microcapsules via thiolene photopolymerization in Pickering emulsion and its application in self-healing coating. Compos. Sci. Technol. 2016, 123, 250–258.

    CAS  Google Scholar 

  18. Bakhshandeh, E.; Sobhani, S.; Croutxé-Barghorn, C.; Allonas, X.; Bastani, S. Siloxane-modified waterborne UV-curable polyurethane acrylate coatings: Chemorheology and viscoelastic analyses. Prog. Org. Coat. 2021, 158, 106323.

    CAS  Google Scholar 

  19. Hu, D. W.; Huang, X. Y.; Li, S. T.; Jiang, P. K. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188, 107995.

    CAS  Google Scholar 

  20. Bakhshandeh, E.; Bastani, S.; Saeb, M. R.; Croutxé-Barghorn, C.; Allonas, X. High-performance water-based UV-curable soft systems with variable chain architecture for advanced coating applications. Prog. Org. Coat. 2019, 130, 99–113.

    CAS  Google Scholar 

  21. Zhou, Y.; Liu, C. P.; Gao, J.; Chen, Y. K.; Yu, F. Y.; Chen, M. F.; Zhang, H. G. A novel hydrophobic coating film of water-borne fluoro-silicon polyacrylate polyurethane with properties governed by surface self-segregation. Prog. Org. Coat. 2019, 134, 134–144.

    CAS  Google Scholar 

  22. Yang, X. T.; Guo, Y. Q.; Luo, X.; Zheng, N.; Ma, T. B.; Tan, J. J.; Li, C. M.; Zhang, Q. Y.; Gu, J. W. Self-healing, recoverable epoxy elastomers, and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.

    CAS  Google Scholar 

  23. Li, Z. W.; Liu, Y.; Marin, M.; Yin, Y. D. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res. 2020, 13, 1882–1888.

    Google Scholar 

  24. Bhingardive, V.; Menahem, L.; Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 2018, 11, 2705–2714.

    CAS  Google Scholar 

  25. Shim, G. S.; Kim, J. S.; Back, J. H.; Jang, S. W.; Park, J. W.; Kim, H. J.; Choi, J. S.; Yeom, J. S. Preparation of acrylic pressure-sensitive adhesives by UV/UV step curing as a way of lifting the limitations of conventional dual curing techniques. Int. J. Adhes. Adhes. 2020, 96, 102445.

    CAS  Google Scholar 

  26. Kazybayeva, D. S.; Irmukhametova, G. S.; Khutoryanskiy, V. V. Thiol-ene “click reactions” as a promising approach to polymer materials. Polym. Sci. Ser. B 2022, 64, 1–16.

    CAS  Google Scholar 

  27. Jiang, B.; Shi, X. R.; Zhang, T.; Huang, Y. D. Recent advances in UV/thermal curing silicone polymers. Chem. Eng. J. 2022, 435, 134843.

    CAS  Google Scholar 

  28. Cui, Y. T.; Wei, B. X.; Wang, Y. J.; Guo, X.; Xiao, J. W.; Li, W.; Pang, A. M.; Bai, Y. P. Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications. Prog. Org. Coat. 2022, 163, 106656.

    CAS  Google Scholar 

  29. Li, X. Q.; Bian, F. P.; Li, S.; Gui, X. F.; Yao, M. F.; Hu, J. W.; Lin, S. D. Preparation of siloxymethyl-modified silicone acrylate prepolymers with UV/moisture dual curability for applications in anti-smudge and anti-fingerprint coatings. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 658, 130669.

    CAS  Google Scholar 

  30. Zheng, N.; Zhang, X.; Min, X.; Liu, J.; Li, W. G.; Ji, X. H. Design of robust superhydrophobic coatings using a novel fluorinated polysiloxane with UV/moisture dual cure system. React. Funct. Polym. 2019, 143, 104329.

    CAS  Google Scholar 

  31. Zheng, N.; Liu, J.; Wang, Y. H.; Li, C. M.; Zhang, Q. Y. Preparation of chitosan-reduced graphene oxide (CS-RGO) microcapsules and its application in UV/moisture-induced self-healing coatings. Prog. Org. Coat. 2021, 151, 106055.

    CAS  Google Scholar 

  32. Zheng, N.; Qiao, L.; Liu, J.; Lu, J. F.; Li, W. G.; Li, C. M.; Liu, Q.; Xue, Y.; Zhang, Q. Y. Microcapsules of multilayered shell structure synthesized via one-part strategy and their application in self-healing coatings. Compos. Commun. 2019, 12, 26–32.

    Google Scholar 

  33. Gabler-Smith, M. K.; Lauder, G. V. Ridges and riblets: Shark skin surfaces versus biomimetic models. Front. Mar. Sci. 2022, 9, 975062.

    Google Scholar 

  34. Pu, X.; Li, G. J.; Liu, Y. H. Progress and perspective of studies on biomimetic shark skin drag reduction. ChemBioEng Rev. 2016, 3, 26–40.

    Google Scholar 

  35. Han, Z. W.; Wang, Z.; Li, B.; Feng, X. M.; Jiao, Z. B.; Zhang, J. Q.; Zhao, J.; Niu, S. C.; Ren, L. Q. Flexible self-cleaning broadband antireflective film inspired by the transparent cicada wings. ACS Appl. Mater. Interfaces 2019, 11, 17019–17027.

    CAS  Google Scholar 

  36. Sun, J. Y.; Bhushan, B. Nanomanufacturing of bioinspired surfaces. Tribol. Int. 2019, 129, 67–74.

    CAS  Google Scholar 

  37. Huang, H. H.; Huang, C. X.; Xu, C. L.; Liu, R. Development and characterization of lotus-leaf-inspired bionic antibacterial adhesion film through beeswax. Food Pack. Shelf Life 2022, 33, 100906.

    CAS  Google Scholar 

  38. Sun, S. J.; Li, H.; Guo, Y. H.; Mi, H. Y.; He, P.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with “rose petal effect” and “lotus leaf effect”. Prog. Org. Coat. 2021, 151, 106090.

    CAS  Google Scholar 

  39. Cheng, Z. J.; Zhang, D. J.; Lv, T.; Lai, H.; Zhang, E. S.; Kang, H. J.; Wang, Y. Z.; Liu, P. C.; Liu, Y. Y.; Du, Y. et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Adv. Funct. Mater. 2018, 28, 1705002.

    Google Scholar 

  40. Barraza, B.; Olate-Moya, F.; Montecinos, G.; Ortega, J. H.; Rosenkranz, A.; Tamburrino, A.; Palza, H. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Sci. Technol. Adv. Mater. 2022, 23, 300–321.

    CAS  Google Scholar 

  41. Wang, Z. Q.; Li, C.; Si, X. Q.; Yang, B.; Huang, Y. X.; Qi, J. L.; Feng, J. C.; Cao, J. Brazing YSZ ceramics by a novel SiO2 nanoparticles modified Ag filler. Ceram. Int. 2020, 46, 16493–16501.

    CAS  Google Scholar 

  42. Gu, J. W.; Zhang, Q. Y.; Li, H. C.; Tang, Y. S.; Kong, J.; Dang, J. Study on preparation of SiO2/epoxy resin hybrid materials by means of sol-gel. Polym. -Plast. Technol. Eng. 2007, 46, 1129–1134.

    CAS  Google Scholar 

  43. Gu, Y. F.; Wu, Y. N.; Li, L. C.; Chen, W.; Li, F. T.; Kitagawa, S. Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem., Int. Ed. 2017, 56, 15658–15662.

    CAS  Google Scholar 

  44. Fonseca, J.; Gong, T. H.; Jiao, L.; Jiang, H. L. Metal—organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids, and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611.

    CAS  Google Scholar 

  45. Rybkovskiy, D. V.; Koroteev, V. O.; Impellizzeri, A.; Vorfolomeeva, A. A.; Gerasimov, E. Y.; Okotrub, A. V.; Chuvilin, A.; Bulusheva, L. G.; Ewels, C. P. “Missing” one-dimensional red-phosphorus chains encapsulated within single-walled carbon nanotubes. ACS Nano 2022, 16, 6002–6012.

    CAS  Google Scholar 

  46. Lin, J.; Li, J. L.; Feng, S. C.; Gu, C. Q.; Li, H. J.; Lu, H. Q.; Hu, F.; Pan, D.; Xu, B. B.; Guo, Z. H. An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Res. 2023, 16, 1052–1063.

    CAS  Google Scholar 

  47. Yang, Z.; Wang, M. Q.; Zhao, Q.; Qiu, H. W.; Li, J. J.; Li, X. M.; Shao, J. Y. Dielectrophoretic-assembled single and parallel-aligned Ag nanowire-ZnO-branched nanorod heteronanowire ultraviolet photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 22837–22845.

    CAS  Google Scholar 

  48. He, H. K.; Yang, F. F.; Yang, R. Flexible full two-dimensional memristive synapses of graphene/WSe2−xOy/graphene. Phys. Chem. Chem. Phys. 2020, 22, 20658–20664.

    CAS  Google Scholar 

  49. Chen, M. L.; Pan, L.; Xia, X. D.; Zhou, W.; Li, Y. Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceram. Int. 2022, 48, 34107–34127.

    CAS  Google Scholar 

  50. Durairaj, M.; Sabari, G. T. C.; Al-Sehemi, A. G. Impact of morphology on the nonlinear optical absorption of pristine molybdenum disulfide (MoS2) nanostructures. Opt. Mater. 2022, 131, 112632.

    Google Scholar 

  51. Johnson, D.; Qiao, Z.; Uwadiunor, E.; Djire, A. Holdups in nitride MXene’s development and limitations in advancing the field of MXene. Small 2022, 18, 2106129.

    CAS  Google Scholar 

  52. Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D Macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

    Google Scholar 

  53. Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    CAS  Google Scholar 

  54. Liu, J.; Fan, X. L.; Xue, Y.; Liu, Y. B.; Song, L X.; Wang, R. M.; Zhang, H. P.; Zhang, Q. Y. Fabrication of polymer capsules by an original multifunctional, active, amphiphilic macromolecule, and its application in preparing PCM microcapsules. New J. Chem. 2018, 42, 6457–6463.

    CAS  Google Scholar 

  55. Zhang, H.; Tan, J. J.; Liu, Y. B.; Hou, C. P.; Ma, Y.; Gu, J. W.; Zhang, B. L.; Zhang, H. P.; Zhang, Q. Y. Design and fabrication of robust, rapid self-healable, superamphiphobic coatings by a liquid-repellent “glue + particles” approach. Mater. Design 2017, 135, 16–25.

    CAS  Google Scholar 

  56. Michailidis, M.; Gutner-Hoch, E.; Wengier, R.; Onderwater, R.; D’Sa, R. A.; Benayahu, Y.; Semenov, A.; Vinokurov, V.; Shchukin, D. G. Highly effective functionalized coatings with antibacterial and antifouling properties. ACS. Sustainable Chem. Eng. 2020, 8, 8928–8937.

    CAS  Google Scholar 

  57. Zhang, M. D.; Zhou, F.; Wu, Y. J.; Wang, Q. Z.; Zhou, Z. F. Microstructure and electrochemical characteristics of CrMoN/Ag nanocomposite coatings in seawater. Surf. Coat. Technol. 2022, 411, 128551.

    Google Scholar 

  58. Ahmadi, R.; Asadpourchallou, N.; Kaleji, B. K. In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties, and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate. Surf. Interfaces 2021, 24, 101072.

    CAS  Google Scholar 

  59. Wang, H. H.; Qin, S. D.; Yang, X. F.; Fei, G. Q.; Tian, M.; Shao, Y. M.; Zhu, K. A waterborne uniform graphene-poly(urethane-acrylate) complex with enhanced anticorrosive properties enabled by ionic interaction. Chem. Eng. J. 2018, 351, 939–951.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52003148), the State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University (No. MRUKF2021023), the Key Research and Development Project of Shaanxi Province (No. 2023-YBGY-475), the Key Scientific Research Project of Education Department of Shaanxi Province (No. 22JS003), the Industrialization Project of the State Key Laboratory of Biological Resources and Ecological Environment (Cultivation) of Qinba Region (No. SXC-2310), and the start-up funds from the Shaanxi University of Technology (No. SLGRCQD2004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu or Wenge Li.

Electronic Supplementary Material

12274_2023_5563_MOESM1_ESM.pdf

Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, N., Liu, J., Wang, G. et al. Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications. Nano Res. 16, 7810–7819 (2023). https://doi.org/10.1007/s12274-023-5563-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5563-8

Keywords

Navigation