Skip to main content
Log in

Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The construction of efficient and durable electrocatalysts with highly dispersed metal clusters and hydrophilic surface for alkaline hydrogen evolution reaction (HER) remains a great challenge. Herein, we prepared hydrophilic nanocomposites of Ru clusters (∼ 1.30 nm) anchored on Na+, K+-decorated porous carbon (Ru/Na+, K+-PC) through hydrothermal method and subsequent annealing treatment at 500 °C. The Ru/Na+, K+-PC exhibits ultralow overpotential of 7 mV at 10 mA·cm−2, mass activity of 15.7 A·mgRu−1 at 100 mV, and long-term durability of 20,000 cycles potential cycling and 200 h chronopotentiometric measurement with a negligible decrease in activity, much superior to benchmarked commercial Pt/C. Density functional theory based calculations show that the energy barrier of H-OH bond breaking is efficiently reduced due to the presence of Na and K ions, thus favoring the Volmer step. Furthermore, the Ru/Na+, K+-PC effectively employs solar energy for obtaining H2 in both alkaline water and seawater electrolyzer. This finding provides a new strategy to construct high-performance and cost-effective alkaline HER electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    CAS  Google Scholar 

  2. Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 2010, 464, 1329–1333.

    CAS  Google Scholar 

  3. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    CAS  Google Scholar 

  4. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  5. Chen, X. Y.; Wan, J. W.; Wang, J.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Wang, N.; Yu, R. B. Atomically dispersed ruthenium on nickel hydroxide ultrathin nanoribbons for highly efficient hydrogen evolution reaction in alkaline media. Adv. Mater. 2021, 33, 2104764.

    CAS  Google Scholar 

  6. Liu, X.; Fang, Z. Y.; Xiong, D. K.; Gong, S. Q.; Niu, Y. L.; Chen, W.; Chen, Z. F. Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res., in press, https://doi.org/10.1007/s12274-022-5085-9.

  7. Li, C.; Jang, H.; Liu, S. G.; Kim, M. G.; Hou, L. Q.; Liu, X. E.; Cho, J. P and Mo dual doped Ru ultrasmall nanoclusters embedded in P-doped porous carbon toward efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200029.

    CAS  Google Scholar 

  8. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  9. Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

    CAS  Google Scholar 

  10. Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

    CAS  Google Scholar 

  11. Chen, J. D.; Qin, M. K.; Ma, S. X.; Fan, R. X.; Zheng, X. Z.; Mao, S. J.; Chen, C. H.; Wang, Y. Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 299, 120640.

    CAS  Google Scholar 

  12. Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

    CAS  Google Scholar 

  13. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

    CAS  Google Scholar 

  14. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

    CAS  Google Scholar 

  15. Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

    CAS  Google Scholar 

  16. Zhao, X.; Li, X. Y.; Xiao, D. D.; Gong, M. X.; An, L. L.; Gao, P. F.; Yang, J. L.; Wang, D. L. Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution. Appl. Catal. B: Environ. 2021, 295, 120280.

    CAS  Google Scholar 

  17. Zhu, F. Y.; Xue, J. Y.; Zeng, L. J.; Shang, J. R.; Lu, S. L.; Cao, X. Q.; Abrahams, B. F.; Gu, H. W.; Lang, J. P. One-pot pyrolysis synthesis of highly active Ru/RuOx nanoclusters for water splitting. Nano Res. 2022, 15, 1020–1026.

    CAS  Google Scholar 

  18. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    CAS  Google Scholar 

  19. Dang, Y. L.; Wu, T. L.; Tan, H. Y.; Wang, J. L.; Cui, C.; Kerns, P.; Zhao, W.; Posada, L.; Wen, L. Y.; Suib, S. L. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 2021, 14, 5433–5443.

    CAS  Google Scholar 

  20. Liu, Q.; Zhang, C. T.; Wang, P. Y.; Chen, D.; Xiao, M. J.; Chen, L.; Liu, S. L.; Yu, J.; Mu, S. C. Nearly hollow Ru-Cu-MoO2 octahedrons consisting of clusters and nanocrystals for high efficiency hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 12341–12349.

    CAS  Google Scholar 

  21. Chen, L. W.; Guo, X.; Shao, R. Y.; Yan, Q. Q.; Zhang, L. L.; Li, Q. X.; Liang, H. W. Structurally ordered intermetallic Ir3V electrocatalysts for alkaline hydrogen evolution reaction. Nano Energy 2021, 81, 105636.

    CAS  Google Scholar 

  22. Zhang, D.; Miao, H. F.; Wu, X. K.; Wang, Z. C.; Zhao, H.; Shi, Y.; Chen, X. L.; Xiao, Z. Y.; Lai, J. P.; Wang, L. Scalable synthesis of ultra-small Ru2P@Ru/CNT for efficient seawater splitting. Chin. J. Catal. 2022, 43, 1148–1155.

    CAS  Google Scholar 

  23. Li, L. G.; Liu, C.; Liu, S. H.; Wang, J.; Han, J. J.; Chan, T. S.; Li, Y. Y.; Hu, Z. W.; Shao, Q.; Zhang, Q. B. et al. Phase engineering of a ruthenium nanostructure toward high-performance bifunctional hydrogen catalysis. ACS Nano 2022, 16, 14885–14894.

    CAS  Google Scholar 

  24. Chen, D.; Lu, R. H.; Yu, R. H.; Dai, Y. H.; Zhao, H. Y.; Wu, D. L.; Wang, P. Y.; Zhu, J. W.; Pu, Z. H.; Chen, L. et al. Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202208642.

    CAS  Google Scholar 

  25. Sun, X. Z.; Gao, X. Y.; Chen, J.; Wang, X.; Chang, H. X.; Li, B.; Song, D. M.; Li, J.; Li, H. S.; Wang, N. Ultrasmall Ru nanoparticles highly dispersed on sulfur-doped graphene for HER with high electrocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 48591–48597.

    CAS  Google Scholar 

  26. Zhang, H.; Su, H.; Soldatov, M. A.; Li, Y. L.; Zhao, X.; Liu, M. H.; Zhou, W. L.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. Dynamic Co-Ru bond shrinkage at atomically dispersed Ru sites for alkaline hydrogen evolution reaction. Small 2021, 17, 2105231.

    CAS  Google Scholar 

  27. Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

    CAS  Google Scholar 

  28. Qin, X. P.; Zhang, L. L.; Xu, G. L.; Zhu, S. Q.; Wang, Q.; Gu, M.; Zhang, X. Y.; Sun, C. J.; Balbuena, P. B.; Amine, K. et al. The role of Ru in improving the activity of Pd toward hydrogen evolution and oxidation reactions in alkaline solutions. ACS Catal. 2019, 9, 9614–9621.

    CAS  Google Scholar 

  29. Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Singleatom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

    CAS  Google Scholar 

  30. Wu, K. L.; Sun, K. A.; Liu, S. J.; Cheong, W. C.; Chen, Z.; Zhang, C.; Pan, Y.; Cheng, Y. S.; Zhuang, Z. W.; Wei, X. W. et al. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467.

    CAS  Google Scholar 

  31. Yan, B. L.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Zhang, Y. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv. Funct. Mater. 2020, 30, 2003007.

    CAS  Google Scholar 

  32. Li, F.; Han, G. F.; Noh, H. J.; Ahmad, I.; Jeon, I. Y.; Baek, J. B. Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 2018, 30, 1803676.

    Google Scholar 

  33. Sun, S. W.; Wang, G. F.; Zhou, Y.; Wang, F. B.; Xia, X. H. High-performance Ru@C4N electrocatalyst for hydrogen evolution reaction in both acidic and alkaline solutions. ACS Appl. Mater. Interfaces 2019, 11, 19176–19182.

    CAS  Google Scholar 

  34. Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. Plasma-assisted highly dispersed Pt single atoms on Ru nanoclusters electrocatalyst for pH-universal hydrogen evolution. Chem. Eng. J. 2022, 448, 137611.

    CAS  Google Scholar 

  35. Zhang, L. N.; Lang, Z. L.; Wang, Y. H.; Tan, H. Q.; Zang, H. Y.; Kang, Z. H.; Li, Y. G. Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy Environ. Sci. 2019, 12, 2569–2580.

    CAS  Google Scholar 

  36. Wang, X. L.; Li, J. W.; Yang, X. T.; Zhao, F. L.; Li, Y. F.; Zhang, D. L.; Gan, L. Y.; Yao, K. X.; Yuan, Q. Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Res. 2022, 15, 7951–7958.

    CAS  Google Scholar 

  37. Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

    CAS  Google Scholar 

  38. Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

    Google Scholar 

  39. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

    CAS  Google Scholar 

  40. Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

    CAS  Google Scholar 

  41. Li, W. Q.; Zhang, H.; Zhang, K.; Hu, W. X.; Cheng, Z. Z.; Chen, H. P.; Feng, X.; Peng, T.; Kou, Z. K. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 306, 121095.

    CAS  Google Scholar 

  42. Chen, L. N.; Wang, S. H.; Zhang, P. Y.; Chen, Z. X.; Lin, X.; Yang, H. J.; Sheng, T.; Lin, W. F.; Tian, N.; Sun, S. G. et al. Ru nanoparticles supported on partially reduced TiO2 as highly efficient catalyst for hydrogen evolution. Nano Energy 2021, 88, 106211.

    CAS  Google Scholar 

  43. Zhou, S. Z.; Jang, H.; Qin, Q.; Hou, L. Q.; Kim, M. G.; Liu, S. G.; Liu, X. E.; Cho, J. Boosting hydrogen evolution reaction by phase engineering and phosphorus doping on Ru/P-TiO2. Angew. Chem., Int. Ed. 2022, 61, e202212196.

    CAS  Google Scholar 

  44. Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

    CAS  Google Scholar 

  45. Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.

    CAS  Google Scholar 

  46. Meng, G.; Tian, H.; Peng, L. X.; Ma, Z. H.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Shi, J. L. Ru to W electron donation for boosted HER from acidic to alkaline on Ru/WNO sponges. Nano Energy 2021, 80, 105531.

    CAS  Google Scholar 

  47. Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.

    Google Scholar 

  48. Yang, B. B.; Xu, J. Y.; Bin, D.; Wang, J.; Zhao, J. Z.; Liu, Y. X.; Li, B. X.; Fang, X. N.; Liu, Y.; Qiao, L. et al. Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 283, 119583.

    CAS  Google Scholar 

  49. Shao, X. D.; Liang, M. F.; Kumar, A.; Liu, X. H.; Jin, H. Y.; Ajmal, S.; Bui, V. Q.; Bui, H. T. D.; Lee, J.; Tran, N. Q. et al. Amorphization of metal nanoparticles by 2D twisted polymer for super hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2102257.

    CAS  Google Scholar 

  50. Li, Y. J.; Liu, H. J.; Li, B.; Yang, Z. Z.; Guo, Z. G.; He, J. B.; Xie, J. H.; Lau, T. C. Ru single atoms and nanoclusters on highly porous N-doped carbon as a hydrogen evolution catalyst in alkaline solutions with ultrahigh mass activity and turnover frequency. J. Mater. Chem. A 2021, 9, 12196–12202.

    CAS  Google Scholar 

  51. Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

    Google Scholar 

  52. Zhu, S. Q.; Qin, X. P.; Yao, Y.; Shao, M. H. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 2020, 142, 8748–8754.

    Google Scholar 

  53. Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

    CAS  Google Scholar 

  54. Liang, Q. R.; Li, Q. Z.; Xie, L.; Zeng, H.; Zhou, S.; Huang, Y. N.; Yan, M.; Zhang, X.; Liu, T. Y.; Zeng, J. et al. Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution. ACS Nano 2022, 16, 7993–8004.

    CAS  Google Scholar 

  55. Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

    Google Scholar 

  56. Qian, C. Z.; Shao, W. Q.; Zhang, X. Y.; Mu, X. Q.; Gu, X. Y.; Yu, M.; Ma, L. G.; Liu, S. L.; Mu, S. C. Competitive coordination-pairing between Ru clusters and single-atoms for efficient hydrogen evolution reaction in alkaline seawater. Small 2022, 18, 2204155.

    CAS  Google Scholar 

  57. Li, J. P.; Wang, W. Y.; Chen, W. X.; Gong, Q. M.; Luo, J.; Lin, R. Q.; Xin, H. L.; Zhang, H.; Wang, D. S.; Peng, Q. et al. Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”. Nano Res. 2018, 11, 4774–4785.

    CAS  Google Scholar 

  58. Ye, S. H.; Luo, F. Y.; Xu, T. T.; Zhang, P. Y.; Shi, H. D.; Qin, S. Q.; Wu, J. P.; He, C. X.; Ouyang, X. P.; Zhang, Q. L. et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.

    CAS  Google Scholar 

  59. Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

    CAS  Google Scholar 

  60. Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

    CAS  Google Scholar 

  61. Tu, K. J.; Tranca, D.; Rodríguez-Hernández, F.; Jiang, K. Y.; Huang, S. H.; Zheng, Q.; Chen, M. X.; Lu, C. B.; Su, Y. Z.; Chen, Z. Y. et al. A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2005433.

    CAS  Google Scholar 

  62. Gu, X. Y.; Yu, M.; Chen, S. Q.; Mu, X. Q.; Xu, Z. H.; Shao, W. Q.; Zhu, J. J.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Coordination environment of Ru clusters with in-situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy 2022, 102, 107656.

    CAS  Google Scholar 

  63. Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

    CAS  Google Scholar 

  64. Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

    CAS  Google Scholar 

  65. McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

    CAS  Google Scholar 

  66. Li, X.; Yao, K. X.; Zhao, F. L.; Yang, X. T.; Li, J. W.; Li, Y. F.; Yuan, Q. Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device. Nano Res. 2022, 15, 6036–6044.

    CAS  Google Scholar 

  67. Huang, J. Z.; Han, J. C.; Wu, T.; Feng, K.; Yao, T.; Wang, X. J.; Liu, S. W.; Zhong, J.; Zhang, Z. H.; Zhang, Y. M. et al. Boosting hydrogen transfer during Volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution. ACS Energy Lett. 2019, 4, 3002–3010.

    CAS  Google Scholar 

  68. Zhang, W. J.; Feng, X.; Mao, Z. X.; Li, J.; Wei, Z. D. Stably immobilizing sub-3 nm high-entropy Pt alloy nanocrystals in porous carbon as durable oxygen reduction electrocatalyst. Adv. Funct. Mater. 2022, 32, 2204110.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571038), Education Department of Guizhou Province (No. 2021312), Foundation of Guizhou Province (No. 2019-5666), State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University, No. 2011DA105287-ZR202101), Science Foundation for After graduated Students of Guizhou Province (No. YJSKYJJ2021023), State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University, No. 202009), and the Open Fund of the Key Lab of Organic Optoelectronics and Molecular Engineering (Tsinghua University). We gratefully acknowledge Analytical and Testing Center of Chongqing University. We also gratefully acknowledge the computing resources provided by Hefei advanced computing center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Yong Gan, Ke Xin Yao or Qiang Yuan.

Electronic Supplementary Material

12274_2023_5558_MOESM1_ESM.pdf

Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites

Supplementary material, approximately 5.06 MB.

Supplementary material, approximately 10.9 MB.

Supplementary material, approximately 10.4 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, M., Shu, T., Li, J. et al. Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites. Nano Res. 16, 8836–8844 (2023). https://doi.org/10.1007/s12274-023-5558-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5558-5

Keywords

Navigation