Skip to main content
Log in

Renal tubule-targeted dexrazoxane suppresses ferroptosis in acute kidney injury by inhibiting ACMSD

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is a heterogeneous clinical complication with no existing definite or particular therapies. Therefore, molecular mechanisms and approaches for treating acute kidney injury are in urgent need. Herein, we demonstrated that dexrazoxane (DXZ), a U.S. Food and Drug Administration (FDA)-approved cardioprotective drug, can both functionally and histologically attenuate cisplatin or ischemia-reperfusion injury-induced AKI in vitro and in vivo via inhibiting ferroptosis specifically. This effect is characterized by decreasing lipid peroxidation, shown by the biomarker of oxidative stress 4-hydroxynonenal (HNE) and prostaglandinendoperoxide synthase 2 (Ptgs2), while reversing the downregulation of glutathione peroxidase 4 (GPX4) and ferritin 1 (FTH-1). Mechanistically, the results revealed that DXZ targeted at the renal tubule significantly inhibits ferroptosis by suppressing α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD). Furthermore, the conjugation of dexrazoxane and polysialic acid (DXZ-PSA) is specifically designed and utilized to enhance the therapeutic effect of DXZ by long-term effect in the kidney, especially retention and targeting in the renal tubules. This study provides a novel therapeutic approach and mechanistic insight for AKI by inhibiting ferroptosis through a new type drug DXZ-PSA with the enhanced renal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, R.; Kellum, J. A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766.

    Article  Google Scholar 

  2. Kellum, J. A.; Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 2018, 14, 217–230.

    Article  Google Scholar 

  3. Kaushal, G. P.; Shah, S. V. Challenges and advances in the treatment of AKI. J. Am. Soc. Nephrol. 2014, 25, 877–883.

    Article  CAS  Google Scholar 

  4. Xu, Y. F.; Ma, H. B.; Shao, J.; Wu, J. F.; Zhou, L. Y.; Zhang, Z. R.; Wang, Y. Z.; Huang, Z.; Ren, J. M.; Liu, S. H. et al. A role for tubular necroptosis in cisplatin-induced AKI. J. Am. Soc. Nephrol. 2015, 26, 2647–2658.

    Article  CAS  Google Scholar 

  5. Linkermann, A.; Skouta, R.; Himmerkus, N.; Mulay, S. R.; Dewitz, C.; De Zen, F.; Prokai, A.; Zuchtriegel, G.; Krombach, F.; Welz, P. S. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. USA 2014, 111, 16836–16841.

    Article  CAS  Google Scholar 

  6. Stockwell, B. R.; Angeli, J. P. F.; Bayir, H.; Bush, A. I.; Conrad, M.; Dixon, S. J.; Fulda, S.; Gascón, S.; Hatzios, S. K.; Kagan, V. E. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017, 171, 273–285.

    Article  CAS  Google Scholar 

  7. Hu, Z. X.; Zhang, H.; Yi, B.; Yang, S. K.; Liu, J.; Hu, J.; Wang, J. W.; Cao, K.; Zhang, W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020, 11, 73.

    Article  CAS  Google Scholar 

  8. Wang, Y.; Quan, F.; Cao, Q. H.; Lin, Y. T.; Yue, C. X.; Bi, R.; Cui, X. M.; Yang, H. B.; Yang, Y.; Birnbaumer, L. et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 2020, 28, 231–243.

    Article  CAS  Google Scholar 

  9. Chen, C. A.; Wang, D. K.; Yu, Y. Y.; Zhao, T. Y.; Min, N. N.; Wu, Y.; Kang, L. C.; Zhao, Y.; Du, L. F.; Zhang, M. Z. et al. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis. 2021, 12, 65.

    Article  CAS  Google Scholar 

  10. Sharma, S.; Leaf, D. E. Iron chelation as a potential therapeutic strategy for AKI prevention. J. Am. Soc. Nephrol. 2019, 30, 2060–2071.

    Article  CAS  Google Scholar 

  11. Martines, A. M. F.; Masereeuw, R.; Tjalsma, H.; Hoenderop, J. G.; Wetzels, J. F. M.; Swinkels, D. W. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat. Rev. Nephrol. 2013, 9, 385–398.

    Article  CAS  Google Scholar 

  12. Fang, X. X.; Wang, H.; Han, D.; Xie, E. J.; Yang, X.; Wei, J. Y.; Gu, S. S.; Gao, F.; Zhu, N. L.; Yin, X. J. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 2011, 116, 2672–2680.

    Article  Google Scholar 

  13. Eneh, C.; Lekkala, M. R. Dexrazoxane; StatPearls Publishing: Treasure Island, 2022.

    Google Scholar 

  14. Karlstetter, M.; Kopatz, J.; Aslanidis, A.; Shahraz, A.; Caramoy, A.; Linnartz-Gerlach, B.; Lin, Y. C.; Lückoff, A.; Fauser, S.; Düker, K. et al. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Mol. Med. 2017, 9, 154–166.

    Article  CAS  Google Scholar 

  15. Li, J. H.; Tang, Y.; Tang, P. M. K.; Lv, J.; Huang, X. R.; Carlsson-Skwirut, C.; Da Costa, L.; Aspesi, A.; Fröhlich, S.; Szczęśniak, P. et al. Blocking macrophage migration inhibitory factor protects against cisplatin-induced acute kidney injury in mice. Mol. Ther. 2018, 26, 2523–2532.

    Article  CAS  Google Scholar 

  16. Skrypnyk, N. I.; Harris, R. C.; De Caestecker, M. D. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice. J. Vis. Eop. 2013, 50495.

  17. Li, W.; Wang, C. S.; Lv, H.; Wang, Z. H.; Zhao, M.; Liu, S. Y.; Gou, L. P.; Zhou, Y.; Li, J.; Zhang, J. Y. et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury. ACS Nano 2021, 15, 18237–18249.

    Article  CAS  Google Scholar 

  18. Xie, X. S.; Zhang, Y. J.; Su, X. W.; Wang, J. N.; Yao, X.; Lv, D.; Zhou, Q.; Mao, J. H.; Chen, J. H.; Han, F. et al. Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectively mitigate acute kidney injury. Nano Res. 2022, 15, 6315–6327.

    Article  CAS  Google Scholar 

  19. Prus, E.; Fibach, E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A 2008, 73, 22–27.

    Article  Google Scholar 

  20. Gao, M. H.; Yi, J. M.; Zhu, J. J.; Minikes, A. M.; Monian, P.; Thompson, C. B.; Jiang, X. J. Role of Mitochondria in ferroptosis. Mol. Cell 2011, 73, 354–363.e3.

    Article  Google Scholar 

  21. Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X. X.; Freitas, F. P.; Seibt, T. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 2018, 172, 409–422.e21.

    Article  CAS  Google Scholar 

  22. Gao, M. H.; Monian, P.; Pan, Q. H.; Zhang, W.; Xiang, J.; Jiang, X. J. Ferroptosis is an autophagic cell death process. Cell Res. 2016, 26, 1021–1032.

    Article  CAS  Google Scholar 

  23. Tian, Y.; Lu, J.; Hao, X. Q.; Li, H.; Zhang, G. Y.; Liu, X. L.; Li, X. R.; Zhao, C. P.; Kuang, W. H.; Chen, D. F. et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 2020, 17, 1796–1812.

    Article  CAS  Google Scholar 

  24. Van Biesen, W.; Vanholder, R.; Lameire, N. Defining acute renal failure: RIFLE and beyond. Clin. J. Am. Soc. Nephrol. 2006, 1, 1314–1319.

    Article  Google Scholar 

  25. Bellomo, R.; Kellum, J. A.; Ronco, C. Defining and classifying acute renal failure: From advocacy to consensus and validation of the RIFLE criteria. Intensive Care Med. 2007, 33, 409–413.

    Article  Google Scholar 

  26. Bauckman, K. A.; Mysorekar, I. U. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 2016, 12, 850–863.

    Article  CAS  Google Scholar 

  27. Yoshino, J. ACMSD: A novel target for modulating NAD+ homeostasis. Trends Endocrinol. Metab. 2019, 30, 229–232.

    Article  CAS  Google Scholar 

  28. Wang, H. Y.; Cheng, Y.; Mao, C.; Liu, S.; Xiao, D. S.; Huang, J.; Tao, Y. G. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol. Ther. 2021, 29, 2185–2208.

    Article  CAS  Google Scholar 

  29. Yang, W. S.; Stockwell, B. R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol 2016, 26, 165–176.

    Article  CAS  Google Scholar 

  30. Cao, H. M.; Cheng, Y. Q.; Gao, H. Q.; Zhuang, J.; Zhang, W. G.; Bian, Q.; Wang, F.; Du, Y.; Li, Z. J.; Kong, D. L. et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano 2020, 14, 4014–4026.

    Article  CAS  Google Scholar 

  31. Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018, 29, 61–74.

    Article  CAS  Google Scholar 

  32. Mühlenhoff, M.; Eckhardt, M.; Gerardy-Schahn, R. Polysialic acid: Three-dimensional structure, biosynthesis and function. Curr. Opin. Struct. Biol. 1998, 8, 558–564.

    Article  Google Scholar 

  33. Troy, F. A. Polysialylation: From bacteria to brains. Glycobiology 1992, 2, 5–23.

    Article  CAS  Google Scholar 

  34. Katsyuba, E.; Mottis, A.; Zietak, M.; De Franco, F.; Van Der Velpen, V.; Gariani, K.; Ryu, D.; Cialabrini, L.; Matilainen, O.; Liscio, P. et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 2018, 563, 354–359.

    Article  CAS  Google Scholar 

  35. Li, T. F.; Walker, A. L.; Iwaki, H.; Hasegawa, Y.; Liu, A. M. Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor. J. Am. Chem. Soc. 2005, 127, 12282–12290.

    Article  CAS  Google Scholar 

  36. Ooi, A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin. Cancer Biol. 2020, 61, 158–166.

    Article  CAS  Google Scholar 

  37. Shan, L.; Xu, X. M.; Zhang, J.; Cai, P.; Gao, H.; Lu, Y. J.; Shi, J. G.; Guo, Y. L.; Su, Y. Increased hemoglobin and heme in MALDI-TOF MS analysis induce ferroptosis and promote degeneration of herniated human nucleus pulposus. Mol. Med. 2021, 27, 103.

    Article  CAS  Google Scholar 

  38. Liu, P. F.; Wu, D.; Duan, J. Y.; Xiao, H. X.; Zhou, Y. L.; Zhao, L.; Feng, Y. T. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 2020, 37, 101702.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Core Facility, Zhejiang University School of Medicine. This work was supported by grants from Zhejiang Provincial Natural Science Foundation of China (No. LZ22H050001), the National Natural Science Foundation of China (Nos. 81970573, 81670651, 81900683, 82000637, and 82173662), Zhejiang provincial program for the Cultivation of High-level Innovative Health talents, Natural Science Foundation of Shanghai (No. 20ZR1410400) and Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (No. 2020KY538).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Han, Xin Cao, Ben Wang or Weiqiang Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, J., An, Q. et al. Renal tubule-targeted dexrazoxane suppresses ferroptosis in acute kidney injury by inhibiting ACMSD. Nano Res. 16, 9701–9714 (2023). https://doi.org/10.1007/s12274-023-5547-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5547-8

Keywords

Navigation