Skip to main content
Log in

La ions-enhanced NH3-SCR performance over Cu-SSZ-13 catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lanthanum (La) ions are generally recognized to cause a decline of the catalytic performance for Cu-SSZ-13 zeolite in the selective catalytic reduction of NOx with NH3 (NH3-SCR). Herein, we demonstrate that the NH3-SCR performance and hydrothermal stability of Cu-La-SSZ-13 zeolites can be enhanced with the incorporation of a small amount of La ions. The incorporation of La ions into SSZ-13 favors more Z2Cu2+ ions at six-membered rings (6MRs), which results in higher hydrothermal stability of Cu-La-SSZ-13 than that of Cu-SSZ-13. The NO conversion of Cu-La-SSZ-13 achieves 5%–10% higher than that of Cu-SSZ-13 at the temperature range of 400–550 °C after hydrothermal ageing. While introducing excess amount of La ions in SSZ-13 may cause the formation of inactive CuOx, leading to the decrease of catalytic activity and hydrothermal stability. Notably, the low-temperature activity of Cu-SSZ-13 with a low Cu content (≤ 2 wt.%) can be boosted by the introduction of La ions, which is largely due to the improved redox ability of Cu active sites modified by La ions. Density functional theory (DFT) calculations indicate that La ions prefer to locate at eight-membered rings (8MRs) and thus promoting the formation of more Z2Cu2+ ions. Meanwhile, the existence of La ions in SSZ-13 inhibits the dealumination process and the transformation from Z2Cu2+ to CuOx, resulting in its enhanced hydrothermal stability. The present work sheds a new insight into the regulation of secondary metal cations for promoting high NH3-SCR performance over Cu-SSZ-13 zeolite catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, L. P.; Cai, S. X.; Gao, M.; Hasegawa, J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976.

    CAS  Google Scholar 

  2. Li, Y.; Li, L.; Yu, J. H. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949.

    CAS  Google Scholar 

  3. Song, J. J.; Liu, S. M.; Ji, Y. J.; Xu, W. Q.; Yu, J.; Liu, B.; Chen, W. X.; Zhang, J. L.; Jia, L. H.; Zhu, T. Y. et al. Dual single-atom Ce-Ti/MnO2catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance. Nano Res. 2023, 16, 299–308.

    CAS  Google Scholar 

  4. Lin, Q. J.; Lin, C. L.; Liu, J. Y.; Liu, S.; Xu, H. D.; Chen, Y. Q.; Dan, Y. Optimization of hybrid crystal with SAPO-5/34 on hydrothermal stability for deNOx reaction by NH3. Chem. Res. Chin. Univ. 2020, 36, 1249–1254.

    CAS  Google Scholar 

  5. Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H. F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371–7405.

    CAS  Google Scholar 

  6. Li, Y.; Yu, J. H. Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174.

    CAS  Google Scholar 

  7. Shan, Y. L.; Du, J. P.; Zhang, Y.; Shan, W. P.; Shi, X. Y.; Yu, Y. B.; Zhang, R. D.; Meng, X. J.; Xiao, F. S.; He, H. Selective catalytic reduction of NOx with NH3: Opportunities and challenges of Cu-based small-pore zeolites. Natl. Sci. Rev. 2021, 8, nwab010.

    CAS  Google Scholar 

  8. Paolucci, C.; Khurana, I.; Parekh, A. A.; Li, S. C.; Shih, A. J.; Li, H.; Di Iorio, J. R.; Albarracin-Caballero, J. D.; Yezerets, A.; Miller, J. T. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 2017, 357, 898–903.

    CAS  Google Scholar 

  9. Kwak, J. H.; Zhu, H. Y.; Lee, J. H.; Peden, C. H. F.; Szanyi, J. Two different cationic positions in Cu-SSZ-13? Chem. Commun. 2012, 48, 4758–4760.

    CAS  Google Scholar 

  10. Martini, A.; Borfecchia, E.; Lomachenko, K. A.; Pankin, I. A.; Negri, C.; Berlier, G.; Beato, P.; Falsig, H.; Bordiga, S.; Lamberti, C. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: A multivariate XAS/FTIR approach to complexity. Chem. Sci. 2017, 8, 6836–6851.

    CAS  Google Scholar 

  11. Luo, J. Y.; Gao, F.; Kamasamudram, K.; Currier, N.; Peden, C. H. F.; Yezerets, A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. J. Catal. 2017, 348, 291–299.

    CAS  Google Scholar 

  12. Chen, M. Y.; Li, J. Y.; Xue, W. J.; Wang, S.; Han, J. F.; Wei, Y. Z.; Mei, D. H.; Li, Y.; Yu, J. H. Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NOx. J. Am. Chem. Soc. 2022, 144, 12816–12824.

    CAS  Google Scholar 

  13. Song, J.; Wang, Y. L.; Walter, E. D.; Washton, N. M.; Mei, D. H.; Kovarik, L.; Engelhard, M. H.; Prodinger, S.; Wang, Y.; Peden, C. H. F. et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability. ACS Catal. 2017, 7, 8214–8227.

    CAS  Google Scholar 

  14. Borfecchia, E.; Lomachenko, K. A.; Giordanino, F.; Falsig, H.; Beato, P.; Soldatov, A. V.; Bordiga, S.; Lamberti, C. Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 2015, 6, 548–563.

    CAS  Google Scholar 

  15. Luo, J. Y.; Wang, D.; Kumar, A.; Li, J. H.; Kamasamudram, K.; Currier, N.; Yezerets, A. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning. Catal. Today 2016, 267, 3–9.

    CAS  Google Scholar 

  16. Shan, Y. L.; Du, J. P.; Yu, Y. B.; Shan, W. P.; Shi, X. Y.; He, H. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH3-SCR reaction. Appl. Catal. B 2020, 266, 118655.

    CAS  Google Scholar 

  17. Gao, F.; Szanyi, J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl. Catal. A 2018, 560, 185–194.

    CAS  Google Scholar 

  18. Shan, Y. L.; Shan, W. P.; Shi, X. Y.; Du, J. P.; Yu, Y. B.; He, H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Appl. Catal. B 2020, 264, 118511.

    Google Scholar 

  19. Nielsen, M.; Brogaard, R. Y.; Falsig, H.; Beato, P.; Swang, O.; Svelle, S. Kinetics of zeolite dealumination: Insights from H-SSZ-13. ACS Catal. 2015, 5, 7131–7139.

    CAS  Google Scholar 

  20. Ehrhardt, K.; Suckow, M.; Lutz, W. Hydrothermal decomposition of aluminosilicate zeolites and prediction of their long-term stability. Stud. Surf. Sci. Catal. 1995, 94, 179–186.

    CAS  Google Scholar 

  21. Wang, Y. J.; Shi, X. Y.; Shan, Y. L.; Du, J. P.; Liu, K.; He, H. Hydrothermal stability enhancement of Al-rich Cu-SSZ-13 for NH3selective catalytic reduction reaction by ion exchange with cerium and samarium. Ind. Eng. Chem. Res. 2020, 59, 6416–6423.

    CAS  Google Scholar 

  22. Zhao, Z. C.; Yu, R.; Shi, C.; Gies, H.; Xiao, F. S.; De Vos, D.; Yokoi, T.; Bao, X. H.; Kolb, U.; McGuire, R. et al. Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH3-SCR of NOx. Catal. Sci. Technol. 2019, 9, 241–251.

    CAS  Google Scholar 

  23. Lee, H.; Song, I.; Jeon, S. W.; Kim, D. H. Control of the Cu ion species in Cu-SSZ-13 via the introduction of Co2+ co-cations to improve the NH3-SCR activity. Catal. Sci. Technol. 2021, 11, 4838–4848.

    CAS  Google Scholar 

  24. Wang, J. G.; Liu, J. Z.; Tang, X. J.; Xing, C.; Jin, T. S. The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2021, 418, 129433.

    CAS  Google Scholar 

  25. Deng, D.; Deng, S. J.; He, D. D.; Wang, Z. H.; Chen, Z. P.; Ji, Y.; Yan, G. P.; Hou, G. J.; Liu, L. C.; He, H. A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR. J. Rare Earths 2021, 39, 969–978.

    CAS  Google Scholar 

  26. Usui, T.; Liu, Z. D.; Ibe, S.; Zhu, J.; Anand, C.; Igarashi, H.; Onaya, N.; Sasaki, Y.; Shiramata, Y.; Kusamoto, T. et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce. ACS Catal. 2018, 8, 9165–9173.

    CAS  Google Scholar 

  27. Park, J. H.; Park, H. J.; Baik, J. H.; Nam, I. S.; Shin, C. H.; Lee, J. H.; Cho, B. K.; Oh, S. H. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process. J. Catal. 2006, 240, 47–57.

    CAS  Google Scholar 

  28. Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H. E.; Paalanen, P.; Arstad, B.; Weckhuysen, B. M.; Beale, A. M. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems. Appl. Catal. B 2014, 154–155, 339–349.

    Google Scholar 

  29. Fan, C.; Chen, Z.; Pang, L.; Ming, S. J.; Dong, C. Y.; Brou Albert, K.; Liu, P.; Wang, J. Y.; Zhu, D. J.; Chen, H. P. et al. Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust. Chem. Eng. J. 2018, 334, 344–354.

    CAS  Google Scholar 

  30. Wei, Y. Z.; Chen, M. Y.; Ren, X. Y.; Wang, Q. F.; Han, J. F.; Wu, W. Z.; Yang, X. G.; Wang, S.; Yu, J. H. One-pot three-dimensional printing robust self-supporting MnOx/Cu-SSZ-13 zeolite monolithic catalysts for NH3-SCR. CCS Chem. 2022, 4, 1708–1719.

    CAS  Google Scholar 

  31. Zhao, Z. C.; Yu, R.; Zhao, R. R.; Shi, C.; Gies, H.; Xiao, F. S.; de Vos, D.; Yokoi, T.; Bao, X. H.; Kolb, U. et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability. Appl. Catal. B 2017, 217, 421–428.

    CAS  Google Scholar 

  32. Chen, J. L.; Huang, W.; Bao, S. Z.; Zhang, W. B.; Liang, T. Y.; Zheng, S. K.; Yi, L.; Guo, L.; Wu, X. Q. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH3-SCR. RSC Adv. 2022, 12, 27746–27765.

    CAS  Google Scholar 

  33. Xue, J. J.; Wang, X. Q.; Qi, G. S.; Wang, J.; Shen, M. Q.; Li, W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J. Catal. 2013, 297, 56–64.

    CAS  Google Scholar 

  34. Jangjou, Y.; Do, Q.; Gu, Y. T.; Lim, L. G.; Sun, H.; Wang, D.; Kumar, A.; Li, J. H.; Grabow, L. C.; Epling, W. S. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure. ACS Catal. 2018, 8, 1325–1337.

    CAS  Google Scholar 

  35. Zhang, T.; Qiu, F.; Li, J. H. Design and synthesis of core—shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NOx with NH3: Enhancement of activity, hydrothermal stability and propene poisoning resistance. Appl. Catal. B 2016, 195, 48–58.

    CAS  Google Scholar 

  36. Godiksen, A.; Stappen, F. N.; Vennestrøm, P. N. R.; Giordanino, F.; Rasmussen, S. B.; Lundegaard, L. F.; Mossin, S. Coordination environment of copper sites in Cu-CHA zeolite investigated by electron paramagnetic resonance. J. Phys. Chem. C 2014, 118, 23126–23138.

    CAS  Google Scholar 

  37. Wan, J.; Chen, J. W.; Zhao, R.; Zhou, R. X. One-pot synthesis of Fe/Cu-SSZ-13 catalyst and its highly efficient performance for the selective catalytic reduction of nitrogen oxide with ammonia. J. Environ. Sci. 2021, 100, 306–316.

    CAS  Google Scholar 

  38. Han, S.; Cheng, J.; Zheng, C. K.; Ye, Q.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust. Appl. Surf. Sci. 2017, 419, 382–392.

    CAS  Google Scholar 

  39. Chen, M. Y.; Wei, Y. Z.; Han, J. F.; Yan, W. F.; Yu, J. Y. Enhancing catalytic performance of Cu-SSZ-13 for the NH3-SCR reaction via in situ introduction of Fe3+ with diatomite. Mater. Chem. Front. 2021, 5, 7787–7795.

    CAS  Google Scholar 

  40. Zhang, T.; Li, J. M.; Liu, J.; Wang, D. X.; Zhao, Z.; Cheng, K.; Li, J. H. High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia. AIChE J. 2015, 61, 3825–3837.

    CAS  Google Scholar 

  41. Martins, G. V. A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore, H. O.; Marchese, L. Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J. Phys. Chem. C 2008, 112, 7193–7200.

    CAS  Google Scholar 

  42. Chen, M. Y.; Sun, Q. M.; Yang, G. J.; Chen, X. X.; Zhang, Q.; Zhang, Y. B.; Yang, X. G.; Yu, J. H. Enhanced performance for selective catalytic reduction of NOx with NH3 over nanosized Cu/SAPO-34 catalysts. ChemCatChem 2019, 11, 3865–3870.

    CAS  Google Scholar 

  43. Han, S. C.; Tang, X. M.; Wang, L. J.; Ma, Y. H.; Chen, W.; Wu, Q. M.; Zhang, L.; Zhu, Q. Y.; Meng, X. J.; Zheng, A. M. et al. Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction. Appl. Catal. B 2021, 281, 119480.

    CAS  Google Scholar 

  44. Wang, J. C.; Peng, Z. L.; Chen, Y.; Bao, W. R.; Chang, L. P.; Feng, G. In-situ hydrothermal synthesis of Cu-SSZ-13/cordierite for the catalytic removal of NOx from diesel vehicles by NH3. Chem. Eng. J. 2015, 263, 9–19.

    CAS  Google Scholar 

  45. Gao, F.; Wang, Y. L.; Washton, N. M.; Kollár, M.; Szanyi, J.; Peden, C. H. F. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts. ACS Catal. 2015, 5, 6780–6791.

    CAS  Google Scholar 

  46. Shiery, R. C.; McElhany, S. J.; Cantu, D. C. Effect of lanthanum ions on the Brønsted acidity of faujasite and implications for hydrothermal stability. J. Phys. Chem. C 2021, 125, 13649–13657.

    CAS  Google Scholar 

  47. Li, Y. F.; Liu, H.; Zhu, J. Q.; He, P.; Wang, P.; Tian, H. P. DFT study on the accommodation and role of La species in ZSM-5 zeolite. Microporous Mesoporous Mater. 2011, 142, 621–628.

    CAS  Google Scholar 

  48. Li, S. H.; Kong, H. Y.; Zhang, W. P. A density functional theory modeling on the framework stability of Al-rich Cu-SSZ-13 zeolite modified by metal ions. Ind. Eng. Chem. Res. 2020, 59, 5675–5685.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 22288101, 21920102005, and 21835002) and the 111 Project (No. B17020) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghai Mei or Jihong Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhao, W., Wei, Y. et al. La ions-enhanced NH3-SCR performance over Cu-SSZ-13 catalysts. Nano Res. 16, 12126–12133 (2023). https://doi.org/10.1007/s12274-023-5500-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5500-x

Keywords

Navigation