Skip to main content
Log in

Spatially asymmetric cascade nanocatalysts for enhanced chemodynamic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemodynamic therapy (CDT) based on cascade catalytic nanomedicine has emerged as a promising cancer treatment strategy. However, most of the reported cascade catalytic systems are designed based on symmetric- or co-assembly of multiple catalytic active sites, in which their functions are difficult to perform independently and may interfere with each other. Especially in cascade catalytic system that involves fragile natural-enzymes, the strong oxidation of free-radicals toward natural-enzymes should be carefully considered, and the spatial distribution of the multiple catalytic active sites should be carefully organized to avoid the degradation of the enzyme catalytic activity. Herein, a spatially-asymmetric cascade nanocatalyst is developed for enhanced CDT, which is composed by a Fe3O4 head and a closely connected mesoporous silica nanorod immobilized with glucose oxidase (mSiO2-GOx). The mSiO2-GOx subunit could effectively deplete glucose in tumor cells, and meanwhile produce a considerable amount of H2O2 for subsequent Fenton reaction under the catalysis of Fe3O4 subunit in the tumor microenvironment. Taking the advantage of the spatial isolation of mSiO2-GOx and Fe3O4 subunits, the catalysis of GOx and free-radicals generation occur at different domains of the asymmetric nanocomposite, minimizing the strong oxidation of free-radicals toward the activity of GOx at the other side. In addition, direct exposure of Fe3O4 subunit without any shelter could further enhance the strong oxidation of free-radicals toward objectives. So, compared with traditional core@shell structure, the long-term stability and efficiency of the asymmetric cascade catalytic for CDT is greatly increased by 138%, thus realizing improved cancer cell killing and tumor restrain efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938–1958.

    CAS  Google Scholar 

  2. Fan, Y.; Liu, S. E.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

    CAS  Google Scholar 

  3. Tong, Z. R.; Gao, Y.; Yang, H.; Wang, W. L.; Mao, Z. W. Nanomaterials for cascade promoted catalytic cancer therapy. View 2021, 2, 20200133.

    CAS  Google Scholar 

  4. Ding, Y.; Xu, H.; Xu, C.; Tong, Z. R.; Zhang, S. T.; Bai, Y.; Chen, Y. N.; Xu, Q. H.; Zhou, L. Z.; Ding, H. et al. A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Adv Sci. 2020, 7, 2001060.

    CAS  Google Scholar 

  5. Chen, W. T.; Ding, S. S.; Wu, J. R.; Shi, G. Y.; Zhu, A. W. In situ detection of hydroxyl radicals in mitochondrial oxidative stress with a nanopipette electrode. Chem. Commun. 2020, 56, 13225–13228.

    CAS  Google Scholar 

  6. Sang, Y. J.; Li, W.; Liu, H.; Zhang, L.; Wang, H.; Liu, Z. W.; Ren, J. S.; Qu, X. G. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 2019, 29, 1900518.

    Google Scholar 

  7. Pryor, W. A. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Annu. Rev. Physiol. 1986, 48, 657–667.

    CAS  Google Scholar 

  8. Hatz, S.; Lambert, J. D. C.; Ogilby, P. R. Measuring the lifetime of singlet oxygen in a single cell: Addressing the issue of cell viability. Photochem. Photobiol. Sci. 2007, 6, 1106–1116.

    CAS  Google Scholar 

  9. Srinivas, U. S.; Tan, B. W. Q.; Vellayappan, B. A.; Jeyasekharan, A. D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084.

    CAS  Google Scholar 

  10. Halliwell, B.; Adhikary, A.; Dingfelder, M.; Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 2021, 50, 8355–8360.

    CAS  Google Scholar 

  11. Yan, L. L.; Zaher, H. S. How do cells cope with RNA damage and its consequences? J. Biol. Chem. 2019, 294, 15158–15171.

    CAS  Google Scholar 

  12. Fei, W. D.; Chen, D. F.; Tang, H. X.; Li, C. Q.; Zheng, W. Z.; Chen, F. Y.; Song, Q. Q.; Zhao, Y. C.; Zou, Y.; Zheng, C. H. Targeted GSH-exhausting and hydroxyl radical self-producing manganese-silica nanomissiles for MRI guided ferroptotic cancer therapy. Nanoscale 2020, 12, 16738–16754.

    CAS  Google Scholar 

  13. Song, C.; Ouyang, Z. J.; Gao, Y.; Guo, H. H.; Wang, S. J.; Wang, D. Y.; Xia, J. D.; Shen, M. W.; Shi, X. Y. Modular design of multifunctional core-shell tecto dendrimers complexed with copper(II) for MR imaging-guided chemodynamic therapy of orthotopic glioma. Nano Today 2021, 41, 101325.

    CAS  Google Scholar 

  14. Guptasarma, P.; Balasubramanian, D.; Matsugo, S.; Saito, I. Hydroxyl radical mediated damage to proteins, with special reference to the crystallins. Biochemistry 1992, 31, 4296–4303.

    CAS  Google Scholar 

  15. Circu, M. L.; Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762.

    CAS  Google Scholar 

  16. Cadet, J.; Davies, K. J. A.; Medeiros, M. H. G.; Di Mascio, P.; Wagner, J. R. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic. Biol. Med. 2017, 107, 13–34.

    CAS  Google Scholar 

  17. Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609–7618.

    CAS  Google Scholar 

  18. Zhang, S. C.; Cao, C. Y.; Lv, X. Y.; Dai, H. M.; Zhong, Z. H.; Liang, C.; Wang, W. J.; Huang, W.; Song, X. J.; Dong, X. C. A H2O2 Self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chem. Sci. 2020, 11, 1926–1934.

    CAS  Google Scholar 

  19. Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem. Int. Ed. 2019, 58, 946–956.

    CAS  Google Scholar 

  20. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    CAS  Google Scholar 

  21. Szatrowski, T. P.; Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor Cells. Cancer Res. 1991, 51, 794–798.

    CAS  Google Scholar 

  22. Wang, M.; Wang, D. M.; Chen, Q.; Li, C. X.; Li, Z. Q.; Lin, J. Recent advances in glucose-oxidase-based nanocomposites for tumor therapy. Small 2019, 15, 1903895.

    CAS  Google Scholar 

  23. Fu, L. H.; Qi, C.; Hu, Y. R.; Lin, J.; Huang, P. Glucose oxidase-instructed multimodal synergistic cancer therapy. Adv. Mater. 2019, 31, 1808325.

    Google Scholar 

  24. Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, 1905271.

    CAS  Google Scholar 

  25. Wang, T. T.; Zhang, H.; Liu, H. H.; Yuan, Q.; Ren, F.; Han, Y. B.; Sun, Q.; Li, Z.; Gao, M. Y. Boosting H2O2-guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic Fenton nanocatalysts and the second near-infrared light irradiation. Adv. Funct. Mater. 2020, 30, 1906128.

    CAS  Google Scholar 

  26. Fu, L. H.; Hu, Y. R.; Qi, C.; He, T.; Jiang, S. S.; Jiang, C.; He, J.; Qu, J. L.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019, 13, 13985–13994.

    CAS  Google Scholar 

  27. Wang, C. H.; Yang, J. X.; Dong, C. Y.; Shi, S. Glucose oxidase-related cancer therapies. Adv. Therap. 2020, 3, 2000110.

    CAS  Google Scholar 

  28. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

    Google Scholar 

  29. Feng, W.; Han, X. G.; Wang, R. Y.; Gao, X.; Hu, P.; Yue, W. W.; Chen, Y.; Shi, J. L. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater. 2019, 31, 1805919.

    Google Scholar 

  30. Chang, K. W.; Liu, Z. H.; Fang, X. F.; Chen, H. B.; Men, X. J.; Yuan, Y.; Sun, K.; Zhang, X. J.; Yuan, Z.; Wu, C. F. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 2017, 17, 4323–4329.

    CAS  Google Scholar 

  31. Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000–11012.

    CAS  Google Scholar 

  32. Yang, X.; Yang, Y.; Gao, F.; Wei, J. J.; Qian, C. G.; Sun, M. J. Biomimetic hybrid nanozymes with self-supplied H+ and accelerated O2 generation for enhanced starvation and photodynamic therapy against hypoxic tumors. Nano Lett. 2019, 19, 4334–4342.

    CAS  Google Scholar 

  33. Zhao, T. C.; Zhu, X. H.; Hung, C. T.; Wang, P. Y.; Elzatahry, A.; Al-Khalaf, A. A.; Hozzein, W. N.; Zhang, F.; Li, X. M.; Zhao, D. Y. Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 2018, 140, 10009–10015.

    CAS  Google Scholar 

  34. Zhang, L.; Zhang, F.; Dong, W. F.; Song, J. F.; Huo, Q. S.; Sun, H. B. Magnetic-mesoporous Janus nanoparticles. Chem. Commun. 2011, 47, 1225–1227.

    CAS  Google Scholar 

  35. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    CAS  Google Scholar 

  36. Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem., Int. Ed. 2009, 48, 5875–5879.

    CAS  Google Scholar 

  37. Zhao, T. C.; Chen, L.; Wang, P. Y.; Li, B. H.; Lin, R. F.; Al-Khalaf, A. A.; Hozzein, W. N.; Zhang, F.; Li, X. M.; Zhao, D. Y. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 2019, 10, 4387.

    Google Scholar 

  38. Yu, Z. Z.; Zhou, P.; Pan, W.; Li, N.; Tang, B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 2018, 9, 5044.

    Google Scholar 

  39. Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv. Mater. 2013, 25, 132–136.

    CAS  Google Scholar 

  40. Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.

    Google Scholar 

  41. Nascimento, R. A. S.; Özel, R. E.; Mak, W. H.; Mulato, M.; Singaram, B.; Pourmand, N. Single cell “glucose nanosensor” verifies elevated glucose levels in individual cancer cells. Nano Lett. 2016, 16, 1194–1200.

    CAS  Google Scholar 

  42. Chen, Q. Q.; Yang, D. Y.; Yu, L. D.; Jing, X. X.; Chen, Y. Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. Mater. Horiz. 2020, 7, 317–337.

    CAS  Google Scholar 

  43. Chen, J.; Wang, X. B.; Liu, Y. B.; Liu, H. L.; Gao, F. L.; Lan, C.; Yang, B. C.; Zhang, S. R.; Gao, Y. J. pH-responsive catalytic mesocrystals for chemodynamic therapy via ultrasound-assisted Fenton reaction. Chem. Eng. J. 2019, 369, 394–402.

    CAS  Google Scholar 

  44. Fu, L. H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 2018, 47, 6454–6472.

    CAS  Google Scholar 

  45. Lei, S.; Zhang, J.; Blum, N. T.; Li, M.; Zhang, D. Y.; Yin, W. M.; Zhao, F.; Lin, J.; Huang, P. In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy. Nat. Commun. 2022, 13, 1298.

    CAS  Google Scholar 

  46. Wu, H. A.; Liu, L.; Song, L. N.; Ma, M.; Gu, N.; Zhang, Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 2019, 13, 14013–14023.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 22075049, 21875043, 22088101, 21701027, 21733003, 21905052, and 51961145403), the National Key R&D Program of China (Nos. 2018YFA0209401 and 2018YFE0201701), Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 17JC1400100), Natural Science Foundation of Shanghai (Nos. 22ZR1478900, 18ZR1404600, and 20490710600), Fundamental Research Funds for the Central Universities (20720220010), Shanghai Rising-Star Program (No. 20QA1401200). The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R55), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yu, H., Chen, L. et al. Spatially asymmetric cascade nanocatalysts for enhanced chemodynamic therapy. Nano Res. 16, 9642–9650 (2023). https://doi.org/10.1007/s12274-023-5486-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5486-4

Keywords

Navigation