Skip to main content
Log in

Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controllable designing of well-defined heterojunction nanostructures provides an insightful strategy for accelerating the kinetics of the hydrogen and oxygen evolution reactions (HER/OER), but such task is still challenging. Herein, we proposed a protocol of heterojunction interface editing (HIE) strategy by oxygen atoms decoration for synergistic boosting electrocatalytic HER and OER performances. A novel Co/NiCoP nanospheres (NSs) heterojunction was synthesized by crystal seed template transformation method with Ni5P4 microspheres as seeds. The effective oxygen atoms interface editing increased the oxidation state of Co atoms and prolonged the Co-P bond length of Co/NiCoP NSs heterojunction, thus the electron localization on P sites was enhanced, leading to the dramatically elevated HER and OER performances simultaneously. The as-constructed O-Co/NiCoP NSs show excellent electrocatalytic activity with 361 and 430 mV vs. reversible hydrogen electrode (RHE) to arrive high current density of 300 mAcm−2 for HER and OER in 1 M KOH as well as good stability. The proposed HIE concept could provide a new perspective on the catalyst design for energy conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  2. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022., 15, 6888–6923.

    Article  CAS  Google Scholar 

  3. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  4. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    Article  CAS  Google Scholar 

  5. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  6. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  Google Scholar 

  7. Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

    Article  Google Scholar 

  8. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  9. Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

    Article  CAS  Google Scholar 

  10. Xu, J. Y.; Liu, Y. F.; Li, J. J.; Amorim, I.; Zhang, B. S.; Xiong, D. H.; Zhang, N.; Thalluri, S. M.; Sousa, J. P. S.; Liu, L. F. Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol. J. Mater. Chem. A 2018, 6, 20646–20652.

    Article  CAS  Google Scholar 

  11. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

    Article  CAS  Google Scholar 

  12. Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

    Article  CAS  Google Scholar 

  13. Zhang, X.; Liang, Y. Y. Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: A synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. 2018, 5, 1700644.

    Article  Google Scholar 

  14. Liu, S. Q.; Wen, H. R.; Guo Y.; Zhu, Y. W.; Fu, X. Z.; Sun, R.; Wong, C. P. Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy 2018, 44, 7–14.

    Article  Google Scholar 

  15. Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

    Article  CAS  Google Scholar 

  16. Zhang, X. P.; Zhu, S. Y.; Xia, L.; Si, C. D.; Qu, F.; Qu, F. L. Ni(OH)2-Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity. Chem. Commun. 2018, 54, 1201–1204.

    Article  CAS  Google Scholar 

  17. Gao, M.; Chen, L. L.; Zhang, Z. H.; Sun, X. P.; Zhang, S. S. Interface engineering of the Ni(OH)2-Ni3N nanoarray heterostructure for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 833–836.

    Article  CAS  Google Scholar 

  18. Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

    Article  Google Scholar 

  19. Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 2018, 30, 1703322.

    Article  Google Scholar 

  20. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    Article  CAS  Google Scholar 

  21. Lin, Y.; Pan, Y.; Liu, S. J.; Sun, K. A.; Cheng, Y. S.; Liu, M.; Wang, Z. J.; Li, X. Y.; Zhang, J. Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Appl. Catal. B: Environ. 2019, 259, 118039.

    Article  CAS  Google Scholar 

  22. Lin, Y.; Sun, K. A.; Liu, S. J.; Chen, X. M.; Cheng, Y. S.; Cheong, W. C.; Chen, Z.; Zheng, L. R.; Zhang, J.; Li, X. Y. et al. Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 2019, 9, 1901213.

    Article  Google Scholar 

  23. Zhang, Q. R.; Bedford, N. M.; Pan, J.; Lu, X. Y.; Amal, R. A fully reversible water electrolyzer cell made up from FeCoNi (oxy)hydroxide atomic layers. Adv. Energy Mater. 2019, 9, 1901312.

    Article  Google Scholar 

  24. Dasireddy, V. D.; Logar, N. Z.; Kovač, J.; Likozar, B. Production of butadiene by oxidative butane dehydrogenation with NO: Effect of the oxidant species and lattice oxygen mobility in V2O5-WO3/TiO2 catalyst. Catal. Sci. Technol. 2022, 12, 2990–3003.

    Article  CAS  Google Scholar 

  25. Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

    Article  CAS  Google Scholar 

  26. Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

    Article  CAS  Google Scholar 

  27. Cheng, J. Q.; Liu, P.; Peng, T.; Liu, Q. L.; Chen, W. S.; Liu, B. W.; Yuan, Y.; Zhang, W.; Song, F.; Gu, J. J. et al. Mechanically alloyed NiTiO3/transition metal heterostructures: Introducing oxygen vacancies for exceptionally enhanced hydrogen evolution reaction activity. J. Mater. Chem. A 2020, 8, 14908–14914.

    Article  CAS  Google Scholar 

  28. Enkhtuvshin, E.; Kim, K. M.; Kim, Y. K.; Mihn, S.; Kim, S. J.; Jung, S. Y.; Thao, N. T. T.; Ali, G.; Akbar, M.; Chung, K. Y. et al. Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. J. Mater. Chem. A 2021, 9, 27332–27346.

    Article  CAS  Google Scholar 

  29. Lin, Y.; Pan, Y.; Zhang, J. CoP nanorods decorated biomass derived N,P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochim. Acta 2017, 232, 561–569.

    Article  CAS  Google Scholar 

  30. Zhao, G. Q.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y. P.; Dou, S. X.; Sun, W. P. Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale 2018, 10, 19074–19081.

    Article  CAS  Google Scholar 

  31. Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato, M.; Del Rio Castillo, A. E.; Bonaccorso, F. Doped-MoSe2 nanoflakes/3D metal oxide-hydr(oxy)oxides hybrid catalysts for pH-universal electrochemical hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801764.

    Article  Google Scholar 

  32. Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

    Article  CAS  Google Scholar 

  33. Huang, Y. P.; Lai, F. L.; Zhang, L. S.; Lu, H. Y.; Miao, Y. E.; Liu, T. X. Elastic carbon aerogels reconstructed from electrospun nanofibers and graphene as three-dimensional networked matrix for efficient energy storage/conversion. Sci. Rep. 2016, 6, 31541.

    Article  CAS  Google Scholar 

  34. Huang, Y. P.; Zhang, L. S.; Lu, H. Y.; Lai, F. L.; Miao, Y. E.; Liu, T. X. A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications. Inorg. Chem. Front. 2016, 3, 969–976.

    Article  CAS  Google Scholar 

  35. Geng, X. M.; Wu, W.; Li, N.; Sun, W. W.; Armstrong, J.; Al-hilo, A.; Brozak, M.; Cui, J. B.; Chen, T. P. Three-dimensional structures of MoS2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction. Adv. Funct. Mater. 2014, 24, 6123–6129.

    Article  CAS  Google Scholar 

  36. Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478–483.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22109090 and 22108306), the Taishan Scholars Program of Shandong Province (No. tsqn201909065), Shandong Provincial Natural Science Foundation (Nos. ZR2021YQ15 and ZR2020QB174), Hefei National Research Center for Physical Sciences at the Microscale (No. KF2021107), and the Fundamental Research Funds for the Central Universities (No. 22CX07009A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Pan.

Electronic supplementary material

12274_2023_5482_MOESM1_ESM.pdf

Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Cui, X., Zhao, Y. et al. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 16, 8765–8772 (2023). https://doi.org/10.1007/s12274-023-5482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5482-8

Keywords

Navigation