Skip to main content
Log in

Moisture electricity generation: Mechanisms, structures, and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the increasing concern of energy crisis and global warming, the whole globe is in an urgent need to develop clean energy that comes from renewable sources and does not harm the environment to fulfill the carbon neutralization and green earth commitments. Water is the most abundant substance on earth and has been historically used as the major energy carriers in watermill, water wheel, and hydroelectricity. Moisture electricity generation is another emerging technology that can convert low-grade energy in the widely-accessible moisture to electricity simply by the integration of moisture, electrodes, and deliberately-designed hygroscopic films. Recent research on moisture electricity generators (MEGs) led to the creation of a series of self-powered sensors and in some occasions they have replaced conventional batteries to power miniaturized devices. In this review, the basic mechanisms of MEGs are firstly clarified, and three categories of them, i.e., gradient structure, homogeneous structure, and heterogeneous structure depending on the structure of hygroscopic films, are then introduced. Furthermore, recent advances in the fabrication, characteristics, and performance of MEGs are summarized, and MEGs with continuous or transient output that could be applied in self-powered sensors and power sources are discussed. Finally, some remaining challenges and our perspectives on MEGs are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Google Scholar 

  3. Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development—A discussion. Renew. Sust. Energy Rev. 2017, 69, 1170–1181.

    Google Scholar 

  4. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sust. Energy Rev. 2014, 39, 748–764.

    Google Scholar 

  5. Midilli, A.; Dincer, I.; Ay, M. Green energy strategies for sustainable development. Energy Policy 2006, 34, 3623–3633.

    Google Scholar 

  6. LeBlanc, S.; Yee, S. K.; Scullin, M. L.; Dames, C.; Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sust. Energy Rev. 2014, 32, 313–327.

    CAS  Google Scholar 

  7. Suarez, F.; Parekh, D. P.; Ladd, C.; Vashaee, D.; Dickey, M. D.; Öztürk, M. C. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 2017, 202, 736–745.

    Google Scholar 

  8. Yang, S. E.; Kim, F.; Ejaz, F.; Lee, G. S.; Ju, H.; Choo, S.; Lee, J.; Kim, G.; Jung, S. J.; Ahn, S. et al. Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy 2021, 81, 105638.

    CAS  Google Scholar 

  9. Guo, Y. B.; Zhang, X. S.; Wang, Y.; Gong, W.; Zhang, Q. H.; Wang, H. Z.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160.

    CAS  Google Scholar 

  10. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    CAS  Google Scholar 

  11. Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    CAS  Google Scholar 

  12. Lu, M. P.; Song, J. H.; Lu, M. Y.; Chen, M. T.; Gao, Y. F.; Chen, L. J.; Wang, Z. L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 2009, 9, 1223–1227.

    CAS  Google Scholar 

  13. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    CAS  Google Scholar 

  14. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    CAS  Google Scholar 

  15. Kozma, E.; Catellani, M. Perylene diimides based materials for organic solar cells. Dyes Pigment. 2013, 98, 160–179.

    CAS  Google Scholar 

  16. Zhou, H. X.; Yang, L. Q.; You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 2012, 45, 607–632.

    CAS  Google Scholar 

  17. Xia, P.; Wu, M. L.; Zhang, S. X.; Hu, J.; Chen, L.; Bu, T. L.; Yi, J. P.; Wu, D.; Xia, J. L. High performance PDI based ternary organic solar cells fabricated with non-halogenated solvent. Org. Electron. 2019, 73, 205–211.

    CAS  Google Scholar 

  18. Paish, O. Small hydro power: Technology and current status. Renew. Sust. Energy Rev. 2002, 6, 537–556.

    Google Scholar 

  19. Han, Y. Y.; Zhang, Z. P.; Qu, L. T. Power generation from graphene-water interactions. FlatChem 2019, 14, 100090.

    CAS  Google Scholar 

  20. Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

    CAS  Google Scholar 

  21. Stephens, G. L.; Li, J. L.; Wild, M.; Clayson, C. A.; Loeb, N.; Kato, S.; L’Ecuyer, T.; Stackhouse, P. W. Jr.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696.

    CAS  Google Scholar 

  22. Dong, J. N.; Fan, F. R.; Tian, Z. Q. Droplet-based nanogenerators for energy harvesting and self-powered sensing. Nanoscale 2021, 13, 17290–17309.

    CAS  Google Scholar 

  23. Lyu, Q. Q.; Peng, B. L.; Xie, Z. J.; Du, S.; Zhang, L. B.; Zhu, J. T. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 2020, 12, 57373–57381.

    CAS  Google Scholar 

  24. Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

    CAS  Google Scholar 

  25. Xu, T.; Ding, X. T.; Huang, Y. X.; Shao, C. X.; Song, L.; Gao, X.; Zhang, Z. P.; Qu, L. T. An efficient polymer moist-electric generator. Energy Environ. Sci. 2019, 12, 972–978.

    CAS  Google Scholar 

  26. Wang, H. Y.; He, T. C.; Hao, X. Z.; Huang, Y. X.; Yao, H. Z.; Liu, F.; Cheng, H. H.; Qu, L. T. Moisture adsorption—desorption full cycle power generation. Nat. Commun. 2022, 13, 2524.

    CAS  Google Scholar 

  27. Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

    CAS  Google Scholar 

  28. Wang, H. Y.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Wang, D. B.; Li, C.; Qu, L. T. Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 2020, 67, 104238.

    CAS  Google Scholar 

  29. He, W. Y.; Wang, H. Y.; Huang, Y. X.; He, T. C.; Chi, F. Y.; Cheng, H. H.; Liu, D.; Dai, L. M.; Qu, L. T. Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy 2022, 95, 107017.

    CAS  Google Scholar 

  30. Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329–335.

    CAS  Google Scholar 

  31. Shi, X.; Luo, J. J.; Luo, J. Z.; Li, X. J.; Han, K.; Li, D.; Cao, X.; Wang, Z. L. Flexible wood-based triboelectric self-powered smart home system. ACS Nano 2022, 16, 3341–3350.

    CAS  Google Scholar 

  32. Xu, R. D.; Qu, L. J.; Tian, M. W. Touch-sensing fabric encapsulated with hydrogel for human-computer interaction. Soft Matter 2021, 17, 9014–9018.

    CAS  Google Scholar 

  33. Li, M. J.; Zong, L.; Yang, W. Q.; Li, X. K.; You, J.; Wu, X. C.; Li, Z. H.; Li, C. X. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 2019, 29, 1901798.

    Google Scholar 

  34. van der Heyden, F. H. J.; Stein, D.; Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95, 116104.

    Google Scholar 

  35. Shao, C. X.; Gao, J.; Xu, T.; Ji, B. X.; Xiao, Y. K.; Gao, C.; Zhao, Y.; Qu, L. T. Wearable fiberform hygroelectric generator. Nano Energy 2018, 53, 698–705.

    CAS  Google Scholar 

  36. Huang, Y. X.; Cheng, H. H.; Yang, C.; Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Shi, G. Q.; Qu, L. T. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

    Google Scholar 

  37. Sun, Z. Y.; Feng, L. L.; Xiong, C. D.; He, X. Y.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Electrospun nanofiber fabric: An efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 2021, 9, 7085–7093.

    CAS  Google Scholar 

  38. Sun, Z. Y.; Feng, L. L.; Wen, X.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 2021, 8, 2303–2309.

    CAS  Google Scholar 

  39. Zhang, J. C.; Hou, Y.; Lei, L. R.; Hu, S. Q. Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J. Membr. Sci. 2022, 662, 120962.

    CAS  Google Scholar 

  40. Sun, Z. Y.; Wen, X.; Wang, L. M.; Yu, J. Y.; Qin, X. H. Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 2022, 15, 4584–4591.

    CAS  Google Scholar 

  41. Lei, D. D.; Zhang, Q. X.; Liu, N. S.; Su, T. Y.; Wang, L. X.; Ren, Z. Q.; Zhang, Z.; Su, J.; Gao, Y. H. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Funct. Mater. 2022, 32, 2107330.

    CAS  Google Scholar 

  42. Zhang, Y.; Yang, T. T.; Shang, K. D.; Guo, F. M.; Shang, Y. Y.; Chang, S. L.; Cui, L. C.; Lu, X. L.; Jiang, Z. B.; Zhou, J. et al. Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 2022, 13, 3484.

    CAS  Google Scholar 

  43. Zhang, K.; Cai, L.; Nilghaz, A.; Chen, G. X.; Wan, X. F.; Tian, J. F. Enhancing output performance of surface-modified wood sponge-carbon black ink hygroelectric generator via moisture-triggered galvanic cell. Nano Energy 2022, 98, 107288.

    CAS  Google Scholar 

  44. Fan, K.; Liu, X. K.; Liu, Y.; Li, Y.; Liu, X. Y.; Feng, W.; Wang, X. Spontaneous power generation from broad-humidity atmospheres through heterostructured F/O-bonded graphene monoliths. Nano Energy 2022, 91, 106605.

    CAS  Google Scholar 

  45. Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

    CAS  Google Scholar 

  46. Chen, N.; Liu, Q. W.; Liu, C.; Zhang, G. F.; Jing, J.; Shao, C. X.; Han, Y. Y.; Qu, L. T. MEG actualized by high-valent metal carrier transport. Nano Energy 2019, 65, 104047.

    CAS  Google Scholar 

  47. Huang, Y. X.; Cheng, H. H.; Yang, C.; Yao, H. Z.; Li, C.; Qu, L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 2019, 12, 1848–1856.

    CAS  Google Scholar 

  48. Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche (Schluss). Ann. Phys. 1853, 165, 353–377.

    Google Scholar 

  49. Stern, H. O. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem. Angew. Phys. Chem. 1924, 30, 508–516.

    CAS  Google Scholar 

  50. Bouzigues, C. I.; Tabeling, P.; Bocquet, L. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys. Rev. Lett. 2008, 101, 114503.

    CAS  Google Scholar 

  51. Smith, A. M.; Lee, A. A.; Perkin, S. The electrostatic screening length in concentrated electrolytes increases with concentration. J. Phys. Chem. Lett. 2016, 7, 2157–2163.

    CAS  Google Scholar 

  52. Shen, D. Z.; Duley, W. W.; Peng, P.; Xiao, M.; Feng, J. Y.; Liu, L.; Zou, G. S.; Zhou, Y. N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722.

    Google Scholar 

  53. Hon, K. C.; Zhao, C. L.; Yang, C.; Chay Low, S. A method of producing electrokinetic power through forward osmosis. Appl. Phys. Lett. 2012, 101, 143902.

    Google Scholar 

  54. Chang, C. C.; Yang, R. J. Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluid. Nanofluid. 2010, 9, 225–241.

    Google Scholar 

  55. Olthuis, W.; Schippers, B.; Eijkel, J.; van den Berg, A. Energy from streaming current and potential. Sens. Actuators B: Chem. 2005, 111-112, 385–389.

    Google Scholar 

  56. Xuan, X. C.; Li, D. Q. Analysis of electrokinetic flow in microfluidic networks. J. Micromech. Microeng. 2004, 14, 290–298.

    CAS  Google Scholar 

  57. Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

    CAS  Google Scholar 

  58. Zhao, X. Y.; Shen, D. Z.; Duley, W. W.; Tan, C. W.; Zhou, Y. N. Water-enabled electricity generation: A perspective. Adv. Energy Sustainability Res. 2022, 3, 2100196.

    Google Scholar 

  59. Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916.

    CAS  Google Scholar 

  60. Liu, K.; Yang, P. H.; Li, S.; Li, J.; Ding, T. P.; Xue, G. B.; Chen, Q.; Feng, G.; Zhou, J. Induced potential in porous carbon films through water vapor absorption. Angew. Chem., Int. Ed. 2016, 55, 8003–8007.

    CAS  Google Scholar 

  61. Cheng, H. H.; Huang, Y. X.; Zhao, F.; Yang, C.; Zhang, P. P.; Jiang, L.; Shi, G. Q.; Qu, L. T. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 2018, 11, 2839–2845.

    CAS  Google Scholar 

  62. Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2011, 16, 811–819.

    Google Scholar 

  63. Ducati, T. R. D.; Simões, L. H.; Galembeck, F. Charge partitioning at gas-solid interfaces: Humidity causes electricity buildup on metals. Langmuir 2010, 26, 13763–13766.

    CAS  Google Scholar 

  64. Lax, J. Y.; Price, C.; Saaroni, H. On the spontaneous build-up of voltage between dissimilar metals under high relative humidity conditions. Sci. Rep. 2020, 10, 7642.

    CAS  Google Scholar 

  65. Eun, J.; Jeon, S. Direct fabrication of high performance moisture-driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films. Nano Energy 2022, 92, 106772.

    CAS  Google Scholar 

  66. Tan, J.; Fang, S. M.; Zhang, Z. H.; Yin, J.; Li, L. X.; Wang, X.; Guo, W. L. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 2022, 13, 3643.

    CAS  Google Scholar 

  67. Tung, R. T. Recent advances in Schottky barrier concepts. Mater. Sci. Eng.: R: Rep. 2001, 35, 1–138.

    Google Scholar 

  68. Brillson, L. J.; Lu, Y. C. ZnO schottky barriers and ohmic contacts. J. Appl. Phys. 2011, 109, 121301.

    Google Scholar 

  69. Dunitz, J. D. Weak intermolecular interactions in solids and liquids. Mol. Cryst. Liq. Cryst. Sci. Technol. Sec. A. Mol. Cryst. Liq. Cryst. 1996, 279, 209–218.

    CAS  Google Scholar 

  70. Długołęcki, P.; Anet, B.; Metz, S. J.; Nijmeijer, K.; Wessling, M. Transport limitations in ion exchange membranes at low salt concentrations. J. Membr. Sci. 2010, 346, 163–171.

    Google Scholar 

  71. Zhu, R. B.; Zhu, Y. Z.; Chen, F. D.; Patterson, R.; Zhou, Y. Z.; Wan, T.; Hu, L.; Wu, T.; Joshi, R.; Li, M. Y. et al. Boosting moisture induced electricity generation from graphene oxide through engineering oxygen-based functional groups. Nano Energy 2022, 94, 106942.

    CAS  Google Scholar 

  72. Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, 1704473.

    Google Scholar 

  73. Guldi, D.; Thomson, J.; Eagling, R.; Darby, C. Chem Soc Rev—Growing stronger. Chem. Soc. Rev. 2011, 40, 15–18.

    Google Scholar 

  74. Lu, W. H.; Ding, T. P.; Wang, X. Q.; Zhang, C.; Li, T. T.; Zeng, K. Y.; Ho, G. W. Anion-cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy 2022, 104, 107892.

    CAS  Google Scholar 

  75. Bai, J. X.; Huang, Y. X.; Wang, H. Y.; Guang, T. L.; Liao, Q. H.; Cheng, H. H.; Deng, S. H.; Li, Q. K.; Shuai, Z. G.; Qu, L. T. Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 2022, 34, 2103897.

    CAS  Google Scholar 

  76. Cai, T. L.; Lan, L. Y.; Peng, B.; Zhang, C.; Dai, S. F.; Zhang, C.; Ping, J. F.; Ying, Y. B. Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 2022, 22, 6476–6483.

    CAS  Google Scholar 

  77. Yang, W. Q.; Li, X. K.; Han, X.; Zhang, W. H.; Wang, Z. B.; Ma, X. M.; Li, M. J.; Li, C. X. Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 2020, 71, 104610.

    CAS  Google Scholar 

  78. Zheng, S.; Tang, J. Y.; Lv, D.; Wang, M.; Yang, X.; Hou, C. S.; Yi, B.; Lu, G.; Hao, R. R.; Wang, M. Z. et al. Continuous energy harvesting from ubiquitous humidity gradients using liquid-infused nanofluidics. Adv. Mater. 2022, 34, 2106410.

    CAS  Google Scholar 

  79. Dinh Trung, V.; Chen, S.; Xia, H.; Natsuki, T.; Ni, Q. Q. A moisture-induced electric generator with high output voltage for self-powered wearable electronics. ChemNanoMat 2022, 8, e202200395.

    CAS  Google Scholar 

  80. Xue, J. L.; Zhao, F.; Hu, C. G.; Zhao, Y.; Luo, H. X.; Dai, L. M.; Qu, L. T. Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 2016, 26, 8784–8792.

    CAS  Google Scholar 

  81. Zhao, Q. N.; Duan, Z. H.; Wu, Y. W.; Liu, B. H.; Yuan, Z.; Jiang, Y. D.; Tai, H. L. Facile primary battery-based humidity sensor for multifunctional application. Sens. Actuators B: Chem. 2022, 370, 132369.

    CAS  Google Scholar 

  82. Cheng, H. H.; Huang, Y. X.; Qu, L. T.; Cheng, Q. L.; Shi, G. Q.; Jiang, L. Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 2018, 45, 37–43.

    CAS  Google Scholar 

  83. Chen, S.; Xia, H.; Ni, Q. Q. A wearable sustainable moisture-induced electricity generator based on rGO/GO/rGO sandwich-like structural film. Adv. Electron. Mater. 2021, 7, 2100222.

    CAS  Google Scholar 

  84. Zhao, Q. N.; Jiang, Y. D.; Duan, Z. H.; Yuan, Z.; Zha, J. J.; Wu, Z. K.; Huang, Q.; Zhou, Z.; Li, H.; He, F. et al. A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 2022, 438, 135588.

    CAS  Google Scholar 

  85. Shen, D. Z.; Xiao, Y.; Zou, G. S.; Liu, L.; Wu, A. P.; Xiao, M.; Feng, J. Y.; Hui, Z.; Duley, W. W.; Zhou, Y. N. Exhaling-driven hydroelectric nanogenerators for stand-alone nonmechanical breath analyzing. Adv. Mater. Technol. 2019, 5, 1900819.

    Google Scholar 

  86. Mandal, S.; Roy, S.; Mandal, A.; Ghoshal, T.; Das, G.; Singh, A.; Goswami, D. K. Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors. ACS Appl. Electron. Mater. 2020, 2, 780–789.

    CAS  Google Scholar 

  87. Chen, S.; Xia, H.; Ni, Q. Q. A sustainable, continuously expandable, wearable breath moisture-induced electricity generator. Carbon 2022, 194, 104–113.

    CAS  Google Scholar 

  88. Yang, S.; Tao, X. M.; Chen, W.; Mao, J. F.; Luo, H.; Lin, S. P.; Zhang, L. S.; Hao, J. H. Ionic hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 2022, 34, 2200693.

    CAS  Google Scholar 

  89. Zhao, F.; Wang, L. X.; Zhao, Y.; Qu, L. T.; Dai, L. M. Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 2017, 29, 1604972.

    Google Scholar 

  90. Huang, Y. X.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 38170–38175.

    CAS  Google Scholar 

  91. Nie, X. W.; Ji, B. X.; Chen, N.; Liang, Y.; Han, Q.; Qu, L. T. Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy 2018, 46, 297–304.

    CAS  Google Scholar 

  92. Li, L. H.; Chen, Z. G.; Hao, M. M.; Wang, S. Q.; Sun, F. Q.; Zhao, Z. G.; Zhang, T. Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett. 2019, 19, 5544–5552.

    CAS  Google Scholar 

  93. Lee, S.; Jang, H.; Lee, H.; Yoon, D.; Jeon, S. Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 2019, 11, 26970–26975.

    CAS  Google Scholar 

  94. Lee, S.; Eun, J.; Jeon, S. Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions. Nano Energy 2020, 68, 104364.

    CAS  Google Scholar 

  95. Shen, D. Z.; Xiao, M.; Zou, G. S.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, 1705925.

    Google Scholar 

  96. Ren, G. P.; Wang, Z.; Zhang, B. T.; Liu, X.; Ye, J.; Hu, Q. C.; Zhou, S. G. A facile and sustainable hygroelectric generator using whole-cell Geobacter sulfurreducens. Nano Energy 2021, 89, 106361.

    CAS  Google Scholar 

  97. Li, Q. J.; Zhou, M.; Yang, Q. F.; Yang, M. Y.; Wu, Q.; Zhang, Z. X.; Yu, J. W. Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A 2018, 6, 10639–10643.

    CAS  Google Scholar 

  98. Gao, X.; Xu, T.; Shao, C. X.; Han, Y. Y.; Lu, B.; Zhang, Z. P.; Qu, L. T. Electric power generation using paper materials. J. Mater. Chem. A 2019, 7, 20574–20578.

    CAS  Google Scholar 

  99. Ren, G. P.; Hu, Q. C.; Ye, J.; Liu, X.; Zhou, S. G.; He, Z. Hydrovoltaic effect of microbial films enables highly efficient and sustainable electricity generation from ambient humidity. Chem. Eng. J. 2022, 441, 135921.

    CAS  Google Scholar 

  100. Liu, J. Y.; Huang, L. Y.; He, W. J.; Cai, X. X.; Wang, Y.; Zhou, L. H.; Yuan, Y. Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils. Nano Energy 2022, 102, 107709.

    CAS  Google Scholar 

  101. Yang, W. Q.; Lv, L. L.; Li, X. K.; Han, X.; Li, M. J.; Li, C. X. Quaternized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano 2020, 14, 10600–10607.

    CAS  Google Scholar 

  102. Zhang, R.; Qu, M. J.; Wang, H.; Fan, M. S.; Chen, Q. S.; Tang, P.; Bin, Y. Z. Moist-electric films based on asymmetric distribution of sodium alginate oxygen-containing functional groups. React. Funct. Polym. 2022, 181, 105421.

    CAS  Google Scholar 

  103. Li, P. D.; Su, N.; Wang, Z. Y.; Qiu, J. S. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 2021, 15, 16811–16818.

    CAS  Google Scholar 

  104. Wu, Y. F.; Shao, B. B.; Song, Z. H.; Li, Y. J.; Zou, Y. T.; Chen, X.; Di, J. T.; Song, T.; Wang, Y. S.; Sun, B. Q. A hygroscopic janus heterojunction for continuous moisture-triggered electricity generators. ACS Appl. Mater. Interfaces 2022, 14, 19569–19578.

    CAS  Google Scholar 

  105. Wei, D.; Yang, F. Y.; Jiang, Z. H.; Wang, Z. L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.

    CAS  Google Scholar 

  106. Hu, Q. C.; Ren, G. P.; Ye, J.; Zhang, B. T.; Rensing, C.; Zhou, S. G. Hygroelectric-photovoltaic coupling generator using self-assembled bio-nano hybrids. Chem. Eng. J. 2023, 452, 139169.

    CAS  Google Scholar 

  107. Bai, J. X.; Hu, Y. J.; Guang, T. L.; Zhu, K. X.; Wang, H. Y.; Cheng, H. H.; Liu, F.; Qu, L. T. Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy Environ. Sci. 2022, 15, 3086–3096.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFB4602401), the National Natural Science Foundation of China (Nos. 52075071 and 52105174), Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (No. KF20200002), and Key Laboratory of Icing and Anti/De-icing of CARDC (No. IADL 20210405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhao or Yahua Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Ge, W., Yuan, Z. et al. Moisture electricity generation: Mechanisms, structures, and applications. Nano Res. 16, 7496–7510 (2023). https://doi.org/10.1007/s12274-023-5465-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5465-9

Keywords

Navigation