Skip to main content
Log in

Identifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The state of nitrogen in nitrogen-doped graphene (NG) promoting the conversion of molecular oxygen to hydrogen peroxide was investigated. The oxygen reduction reaction (ORR) reactivity of graphitic-N, pyrrolic-N, and pyridinic-N in NG was predicted by density functional theory (DFT). A series of NG samples with different contents of these doped nitrogen types were prepared by the low-temperature thermal reduction method and used for the ORR evaluation. The H2O2 yield, 2e ORR current efficiency, H2O2 selectivity, and electron transfer number (n) were systematically studied. The 2e ORR selectivity was positively correlated with the N content, approaching 100% with increasing N content (0.40 V vs. reversible hydrogen electrode (RHE)), whereas the comparative energy efficiency showed a volcano-type trend related to N content, reaching a maximum of 94%. In addition, N species validation experiments proved the key role of pyrrolic-N in the synthesis of H2O2. Compared with a pure graphene catalyst, further contaminant degradation studies on NG electrodes with different pyrrolic-N contents revealed that the lower pyrrolic-N the higher removal of p-nitrophenol (PNP). This work provides insight into the mechanism of ORR on metal-free catalysts and a facile approach to optimize this important environmental catalytic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

    Google Scholar 

  2. Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.

    Google Scholar 

  3. Kangkamano, T.; Vagin, M.; Meng, L. Y.; Thavarungkul, P.; Kanatharana, P.; Crispin, X.; Mak, W. C. Product-to-intermediate relay achieving complete oxygen reduction reaction (cORR) with Prussian blue integrated nanoporous polymer cathode in fuel cells. Nano Energy 2020, 78, 105125.

    CAS  Google Scholar 

  4. Jung, E.; Shin, H.; Antink, W. H.; Sung, Y. E.; Hyeon, T. Recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design. ACS Energy Lett. 2020, 5, 1881–1892.

    CAS  Google Scholar 

  5. Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

    CAS  Google Scholar 

  6. Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

    Google Scholar 

  7. Geng, X. L.; Wang, L.; Zhang, L.; Wang, H.; Peng, Y. Y.; Bian, Z. Y. H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst. Chem. Eng. J. 2021, 420, 129722.

    CAS  Google Scholar 

  8. Song, X. Z.; Zhang, H.; Bian, Z. Y.; Wang, H. In situ electrogeneration and activation of H2O2 by atomic Fe catalysts for the efficient removal of chloramphenicol. J. Hazard. Mater. 2021, 412, 125162.

    CAS  Google Scholar 

  9. Li, Y.; Miller, C. J.; Wu, L.; Waite, T. D. Hydroxyl radical production via a reaction of electrochemically generated hydrogen peroxide and atomic hydrogen: An effective process for contaminant oxidation? Environ. Sci. Technol. 2022, 56, 5820–5829.

    CAS  Google Scholar 

  10. Lee, J.; Choi, S. W.; Back, S.; Jang, H.; Sa, Y. J. Pd17Se15-Pd3B nanocoral electrocatalyst for selective oxygen reduction to hydrogen peroxide in near-neutral electrolyte. Appl. Catal. B Environ. 2022, 309, 121265.

    CAS  Google Scholar 

  11. Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X. L. et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

    CAS  Google Scholar 

  12. Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

    CAS  Google Scholar 

  13. Liu, J. J.; Gong, Z. C.; Yan, M. M.; He, G. C.; Gong, H. S.; Ye, G. L.; Fei, H. L. Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 2022, 18, 2103824.

    CAS  Google Scholar 

  14. Dong, K.; Liang, J.; Wang, Y. Y.; Zhang, L. C.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Li, T. S.; Liu, Q.; Li, N. et al. Conductive two-dimensional magnesium metal-organic frameworks for high-efficiency O2 electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099.

    CAS  Google Scholar 

  15. Su, P.; Fu, W. Y.; Hu, Z. Z.; Jing, J. N.; Zhou, M. H. Insights into transition metal encapsulated N-doped CNTs cathode for self-sufficient electrocatalytic degradation. Appl. Catal. B Environ. 2022, 313, 121457.

    CAS  Google Scholar 

  16. Hu, Y. Z.; Zhang, J. J.; Shen, T.; Li, Z. R.; Chen, K.; Lu, Y.; Zhang, J.; Wang, D. L. Efficient electrochemical production of H2O2 on hollow n-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 2021, 13, 29551–29557.

    CAS  Google Scholar 

  17. Zhou, W.; Xie, L.; Gao, J. H.; Nazari, R.; Zhao, H. Q.; Meng, X. X.; Sun, F.; Zhao, G. B.; Ma, J. Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review. Chem. Eng. J. 2021, 410, 128368.

    CAS  Google Scholar 

  18. Liu, W.; Zhang, C.; Zhang, J. J.; Huang, X.; Song, M.; Li, J. W.; He, F.; Yang, H. P.; Zhang, J.; Wang, D. L. Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B Environ. 2022, 310, 121312.

    CAS  Google Scholar 

  19. Zhang, W. H.; Bian, Z. Y.; Xin, X.; Wang, L.; Geng, X. L.; Wang, H. Comparison of visible light driven H2O2 and peroxymonosulfate degradation of norfloxacin using Co/g-C3N4. Chemosphere 2021, 262, 127955.

    CAS  Google Scholar 

  20. Lee, K.; Lim, J.; Lee, M. J.; Ryu, K.; Lee, H.; Kim, J. Y.; Ju, H.; Cho, H. S.; Kim, B. H.; Hatzell, M. C. et al. Structure-controlled graphene electrocatalysts for high-performance H2O2 production. Energy Environ. Sci. 2022, 15, 2858–2866.

    CAS  Google Scholar 

  21. Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

    Google Scholar 

  22. Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

    CAS  Google Scholar 

  23. Wu, K. H.; Wang, D.; Lu, X. Y.; Zhang, X. F.; Xie, Z. L.; Liu, Y. F.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ inerface engineering with surfactants. Chem 2020, 6, 1443–1458.

    CAS  Google Scholar 

  24. Buan, M. E. M.; Muthuswamy, N.; Walmsley, J. C.; Chen, D.; Rønning, M. Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts. Carbon 2016, 101, 191–202.

    CAS  Google Scholar 

  25. Zhang, C. Y.; Liu, G. Z.; Ning, B.; Qian, S. R.; Zheng, D. N.; Wang, L. Highly efficient electrochemical generation of H2O2 on N/O co-modified defective carbon. Int. J. Hydrogen Energy 2021, 46, 14277–14287.

    CAS  Google Scholar 

  26. Ding, Y. N.; Zhou, W.; Gao, J. H.; Sun, F.; Zhao, G. B. H2O2 electrogeneration from O2 electroreduction by N-doped carbon materials:A mini-review on preparation methods, selectivity of N sites, and prospects. Adv. Mater. Interfaces 2021, 8, 2002091.

    CAS  Google Scholar 

  27. Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

    CAS  Google Scholar 

  28. Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

    CAS  Google Scholar 

  29. Su, P.; Zhou, M. H.; Song, G.; Du, X. D.; Lu, X. Y. Efficient H2O2 generation and spontaneous ·OH conversion for in-situ phenol degradation on nitrogen-doped graphene: Pyrolysis temperature regulation and catalyst regeneration mechanism. J. Hazard. Mater. 2020, 397, 122681.

    CAS  Google Scholar 

  30. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    CAS  Google Scholar 

  31. Zhao, X. H.; Liu, Y. Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 2021, 143, 9423–9428.

    CAS  Google Scholar 

  32. He, F.; Zheng, Y.; Fan, H. L.; Ma, D. L.; Chen, Q. F.; Wei, T.; Wu, W. B.; Wu, D.; Hu, X. Oxidase-inspired selective 2e/4e reduction of oxygen on electron-deficient Cu. ACS Appl. Mater. Interfaces 2020, 12, 4833–4842.

    CAS  Google Scholar 

  33. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

    CAS  Google Scholar 

  34. Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

    Google Scholar 

  35. Sun, J. Q.; Lowe, S. E.; Zhang, L. J.; Wang, Y. Z.; Pang, K. L.; Wang, Y.; Zhong, Y. L.; Liu, P. R.; Zhao, K.; Tang, Z. Y. et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511–16515.

    CAS  Google Scholar 

  36. Kim, H. W.; Park, H.; Roh, J. S.; Shin, J. E.; Lee, T. H.; Zhang, L.; Cho, Y. H.; Yoon, H. W.; Bukas, V. J.; Guo, J. H. et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction. Chem. Mater. 2019, 31, 3967–3973.

    CAS  Google Scholar 

  37. Kim, H. W.; Bukas, V. J.; Park, H.; Park, S.; Diederichsen, K. M.; Lim, J.; Cho, Y. H.; Kim, J.; Kim, W.; Han, T. H. et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide. ACS Catal. 2020, 10, 852–863.

    CAS  Google Scholar 

  38. Song, X. Z.; Li, N.; Zhang, H.; Wang, L.; Yan, Y. J.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl. Mater. Interfaces 2020, 12, 17519–17527.

    CAS  Google Scholar 

  39. Du, D. H.; Li, P. C.; Ouyang, J. Y. Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. ACS Appl. Mater. Interfaces 2015, 7, 26952–26958.

    CAS  Google Scholar 

  40. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    CAS  Google Scholar 

  41. Xiao, F.; Wang, Z. N.; Fan, J. Q.; Majima, T.; Zhao, H. Y.; Zhao, G. H. Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3-electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants. Angew. Chem., Int. Ed. 2021, 60, 10375–10383.

    CAS  Google Scholar 

  42. Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455–3461.

    CAS  Google Scholar 

  43. Yang, Y. J.; Bian, Z. Y. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen. Sci. Total Environ. 2021, 753, 141908.

    CAS  Google Scholar 

  44. Zhang, W. H.; Peng, Y. Y.; Yang, Y. J.; Zhang, L.; Bian, Z. Y.; Wang, H. Bismuth-rich strategy intensifies the molecular oxygen activation and internal electrical field for the photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 430, 132963.

    CAS  Google Scholar 

  45. Yang, H.; Zhao, F. Y.; Cao, X. Y.; Liu, Q. Y.; Zhang, X. X.; Zhang, X. Porphyrin-modified cobalt sulfide as a developed noble metal-free photoelectrocatalyst toward methanol oxidation under visible light. J. Phys. Chem. C 2020, 124, 26678–26687.

    CAS  Google Scholar 

  46. Ai, J.; Yin, W. Z.; Hansen, H. C. B. Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char. Environ. Sci. Technol. Lett. 2019, 6, 191–196.

    CAS  Google Scholar 

  47. Su, P.; Zhou, M. H.; Lu, X. Y.; Yang, W. L.; Ren, G. B.; Cai, J. J. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Appl. Catal. B Environ. 2019, 245, 583–595.

    CAS  Google Scholar 

  48. Yu, F. K.; Tao, L.; Yang, Y.; Wang, S. Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of ·OH in metal-free EAOPs to degrade organic pollutants. Sep. Purif. Technol. 2021, 277, 119432.

    CAS  Google Scholar 

  49. Yang, W. L.; Zhou, M. H.; Liang, L. Highly efficient in-situ metal-free electrochemical advanced oxidation process using graphite felt modified with N-doped graphene. Chem. Eng. J. 2018, 338, 700–708.

    CAS  Google Scholar 

  50. Nam, G.; Park, J.; Kim, S. T.; Shin, D. B.; Park, N.; Kim, Y.; Lee, J. S.; Cho, J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Lett. 2014, 14, 1870–1876.

    CAS  Google Scholar 

  51. Zhang, W. H.; Bian, Z. Y.; Peng, Y. Y.; Tang, H. Y.; Wang, H. Dual-function oxygen vacancy of BiOBr intensifies pollutant adsorption and molecular oxygen activation to remove tetracycline hydrochloride. Chem. Eng. J. 2023, 451, 138731.

    CAS  Google Scholar 

  52. Yang, Y. J.; Bian, Z. Y.; Zhang, L.; Wang, H. Bi@BiOx(OH)y modified oxidized g-C3N4 photocatalytic removal of tetracycline hydrochloride with highly effective oxygen activation. J. Hazard. Mater. 2022, 427, 127866.

    CAS  Google Scholar 

Download references

Acknowledgements

The present work is financially supported by the Beijing Natural Science Foundation of China (No. 8222061), the National Natural Science Foundation of China (Nos. 21872009 and 52070015), and the National Key Research and Development Program of China (No. 2018YFC1802500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyong Bian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Bian, Z., Zhang, W. et al. Identifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene. Nano Res. 16, 6642–6651 (2023). https://doi.org/10.1007/s12274-023-5421-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5421-0

Keywords

Navigation