Skip to main content
Log in

Tunable nano-engineered anisotropic surface for enhanced mechanotransduction and soft-tissue integration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemically engineered titania (TiO2) nanopores enable tailored cellular function; however, the cellular mechanosensing mechanisms dictating the cell response and soft tissue integration are yet to be elucidated. Here, we report the fabrication of anisotropic TiO2 nanopores with diameters of 46 and 66 nm on microrough titanium (Ti) via electrochemical anodization, towards short- and long-term guidance of human primary gingival fibroblasts (hGFs). Cells on tissue culture plates and bare Ti substrates were used as controls. Notably, we show that nanopores with a diameter of 66 nm induced more mature focal adhesions of vinculin and paxillin at the membrane, encouraged the development of actin fibers at focal adhesion sites, and led to elongated cell and nuclear shape. These topographical-driven changes were attributed to the Ras-related C3 botulinum toxin substrate 1 (Rac 1) GTPase pathway and nuclear localisation of LAMIN A/C and yes-associated protein (YAP) and associated with increased ligament differentiation with elevated expression of the ligament marker Mohawk homeobox (MKX). Study findings reveal that minor tuning of nanopore diameter is a powerful tool to explore intracellular and nuclear mechanotransduction and gain insight into the relationships between nanomaterials and mechanoresponsive cellular elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubow, K. E.; Conrad, S. K.; Horwitz, A. R. Matrix microarchitecture and myosin II determine adhesion in 3D matrices. Curr. Biol. 2013, 23, 1607–1619.

    CAS  Google Scholar 

  2. Lv, L. W.; Tang, Y. M.; Zhang, P.; Liu, Y. S.; Bai, X. S.; Zhou, Y. S. Biomaterial cues regulate epigenetic state and cell functions—A systematic review. Tissue Eng. Part B Rev. 2018, 24, 112–132.

    Google Scholar 

  3. Ma, C. Y.; Kuzma, M. L.; Bai, X. C.; Yang, J. Biomaterial-based metabolic regulation in regenerative engineering. Adv. Sci. (Weinh.) 2019, 6, 1900819.

    CAS  Google Scholar 

  4. Amani, H.; Arzaghi, H.; Bayandori, M.; Dezfuli, A. S.; Pazoki-Toroudi, H.; Shafiee, A.; Moradi, L. Controlling cell behavior through the design of biomaterial surfaces: A focus on surface modification techniques. Adv. Mater. Interfaces 2019, 6, 1900572.

    Google Scholar 

  5. Hynes, R. O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219.

    CAS  Google Scholar 

  6. Han, P. P.; Gomez, G. A.; Duda, G. N.; Ivanovski, S.; Poh, P. S. P. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater., in press, https://doi.org/10.1016/j.actbio.2022.01.020.

  7. Han, P. P.; Vaquette, C.; Abdal-Hay, A.; Ivanovski, S. The mechanosensing and global DNA methylation of human osteoblasts on MEW fibers. Nanomaterials (Basel) 2021, 11, 2943.

    CAS  Google Scholar 

  8. Frith, J. E.; Kusuma, G. D.; Carthew, J.; Li, F. Y.; Cloonan, N.; Gomez, G. A.; Cooper-White, J. J. Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling. Nat. Commun. 2018, 9, 257.

    Google Scholar 

  9. McMurray, R. J.; Gadegaard, N.; Tsimbouri, P. M.; Burgess, K. V.; McNamara, L. E.; Tare, R.; Murawski, K.; Kingham, E.; Oreffo, R. O. C.; Dalby, M. J. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater. 2011, 10, 637–644.

    CAS  Google Scholar 

  10. Chen, X. Y.; Lai, N. C. H.; Wei, K. C.; Li, R.; Cui, M.; Yang, B. G.; Wong, S. H. D.; Deng, Y. R.; Li, J. S.; Shuai, X. T. et al. Biomimetic presentation of cryptic ligands via single-chain nanogels for synergistic regulation of stem cells. ACS Nano 2020, 14, 4027–4035.

    CAS  Google Scholar 

  11. Seong, H.; Higgins, S. G.; Penders, J.; Armstrong, J. P. K.; Crowder, S. W.; Moore, A. C.; Sero, J. E.; Becce, M.; Stevens, M. M. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 2020, 14, 5371–5381.

    CAS  Google Scholar 

  12. Hansel, C. S.; Crowder, S. W.; Cooper, S.; Gopal, S.; João Pardelha da Cruz, M.; de Oliveira Martins, L.; Keller, D.; Rothery, S.; Becce, M.; Cass, A. E. G. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 2019, 13, 2913–2926.

    CAS  Google Scholar 

  13. Frith, J. E.; Mills, R. J.; Cooper-White, J. J. Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J. Cell. Sci. 2012, 125, 317–327.

    CAS  Google Scholar 

  14. Han, P. P.; Frith, J. E.; Gomez, G. A.; Yap, A. S.; O’Neill, G. M.; Cooper-White, J. J. Five piconewtons: The difference between osteogenic and adipogenic fate choice in human mesenchymal stem cells. ACS Nano 2019, 13, 11129–11143.

    CAS  Google Scholar 

  15. Carthew, J.; Abdelmaksoud, H. H.; Hodgson-Garms, M.; Aslanoglou, S.; Ghavamian, S.; Elnathan, R.; Spatz, J. P.; Brugger, J.; Thissen, H.; Voelcker, N. H. et al. Precision surface microtopography regulates cell fate via changes to actomyosin contractility and nuclear architecture. Adv. Sci. (Weinh.) 2021, 8, 2003186.

    CAS  Google Scholar 

  16. Matsugaki, A.; Aramoto, G.; Ninomiya, T.; Sawada, H.; Hata, S.; Nakano, T. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure. Biomaterials 2015, 37, 134–143.

    CAS  Google Scholar 

  17. Nakanishi, Y.; Matsugaki, A.; Kawahara, K.; Ninomiya, T.; Sawada, H.; Nakano, T. Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly. Biomaterials 2019, 209, 103–110.

    CAS  Google Scholar 

  18. Xia, J.; Yuan, Y.; Wu, H. Y.; Huang, Y. T.; Weitz, D. A. Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells. Biomaterials 2020, 248, 120014.

    CAS  Google Scholar 

  19. Gulati, K.; Kogawa, M.; Maher, S.; Atkins, G.; Findlay, D.; Losic, D. Titania nanotubes for local drug delivery from implant surfaces. In Electrochemically Engineered Nanoporous Materials: Methods, Properties and Applications. Losic, D.; Santos, A., Eds.; Springer: Cham, 2015; pp 307–355.

    Google Scholar 

  20. Bello, D. G.; Fouillen, A.; Badia, A.; Nanci, A. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells. Acta Biomater. 2017, 60, 339–349.

    Google Scholar 

  21. Bello, D. G.; Fouillen, A.; Badia, A.; Nanci, A. Nanoporosity stimulates cell spreading and focal adhesion formation in cells with mutated paxillin. ACS Appl. Mater. Interfaces 2020, 12, 14924–14932.

    Google Scholar 

  22. Zheng, H. M.; Tian, Y. J.; Gao, Q.; Yu, Y. J.; Xia, X. Y.; Feng, Z. P.; Dong, F.; Wu, X. D.; Sui, L. Hierarchical micro-nano topography promotes cell adhesion and osteogenic differentiation via integrin α2-PI3K-AKT signaling axis. Front. Bioeng. Biotechnol. 2020, 8, 463.

    Google Scholar 

  23. Haupt, A.; Minc, N. How cells sense their own shape-mechanisms to probe cell geometry and their implications in cellular organization and function. J. Cell Sci. 2018, 131, jcs214015.

    Google Scholar 

  24. Park, J. S.; Moon, D.; Kim, J. S.; Lee, J. S. Cell adhesion and growth on the anodized aluminum oxide membrane. J. Biomed. Nanotechnol. 2016, 12, 575–580.

    CAS  Google Scholar 

  25. Koo, S.; Muhammad, R.; Peh, G. S. L.; Mehta, J. S.; Yim, E. K. F. Micro- and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomater. 2014, 10, 1975–1984.

    CAS  Google Scholar 

  26. Swaminathan, V.; Waterman, C. M. The molecular clutch model for mechanotransduction evolves. Nat. Cell Biol. 2016, 18, 459–461.

    CAS  Google Scholar 

  27. Turner, C. E. Paxillin and focal adhesion signalling. Nat. Cell Biol. 2000, 2, E231–E236.

    CAS  Google Scholar 

  28. Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474, 179–183.

    CAS  Google Scholar 

  29. Cho, S.; Irianto, J.; Discher, D. E. Mechanosensing by the nucleus: From pathways to scaling relationships. J. Cell Biol. 2017, 216, 305–315.

    CAS  Google Scholar 

  30. Crowder, S. W.; Leonardo, V.; Whittaker, T.; Papathanasiou, P.; Stevens, M. M. Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 2016, 18, 39–52.

    CAS  Google Scholar 

  31. Worley, K.; Certo, A.; Wan, L. Q. Geometry-force control of stem cell fate. Bionanoscience 2013, 3, 43–51.

    Google Scholar 

  32. DuFort, C. C.; Paszek, M. J.; Weaver, V. M. Balancing forces: Architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 2011, 12, 308–319.

    CAS  Google Scholar 

  33. Bao, L.; Cui, X. J.; Wang, X. Y.; Wu, J. G.; Guo, M. Y.; Yan, N.; Chen, C. Y. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism. ACS Nano 2021, 15, 15858–15873.

    CAS  Google Scholar 

  34. Guo, T. Q.; Oztug, N. A. K.; Han, P. P.; Ivanovski, S.; Gulati, K. Old is gold: Electrolyte aging influences the topography, chemistry, and bioactivity of anodized TiO2 nanopores. ACS Appl. Mater. Interfaces 2021, 13, 7897–7912.

    CAS  Google Scholar 

  35. Gulati, K.; Moon, H. J.; Kumar, P. T. S.; Han, P. P.; Ivanovski, S. Anodized anisotropic titanium surfaces for enhanced guidance of gingival fibroblasts. Mater. Sci. Eng. C 2020, 112, 110860.

    CAS  Google Scholar 

  36. Gulati, K.; Moon, H. J.; Li, T.; Kumar, P. T. S.; Ivanovski, S. Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity. Mater. Sci. Eng. C 2018, 91, 624–630.

    CAS  Google Scholar 

  37. Guo, T. Q.; Gulati, K.; Arora, H.; Han, P. P.; Fournier, B.; Ivanovski, S. Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater. 2021, 124, 33–49.

    CAS  Google Scholar 

  38. Guo, T. Q.; Gulati, K.; Arora, H.; Han, P. P.; Fournier, B.; Ivanovski, S. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent. Mater. 2021, 37, 816–831.

    Google Scholar 

  39. Gulati, K.; Li, T.; Ivanovski, S. Consume or conserve: Microroughness of titanium implants toward fabrication of dual micro-nanotopography. ACS Biomater. Sci. Eng. 2018, 4, 3125–3131.

    CAS  Google Scholar 

  40. Li, T.; Gulati, K.; Wang, N.; Zhang, Z. T.; Ivanovski, S. Bridging the gap: Optimized fabrication of robust titania nanostructures on complex implant geometries towards clinical translation. J. Colloid Interface Sci. 2018, 529, 452–463.

    CAS  Google Scholar 

  41. Gulati, K.; Del Olmo Martinez, R.; Czerwiński, M.; Michalska-Domańska, M. Understanding the influence of electrolyte aging in electrochemical anodization of titanium. Adv. Colloid Interface Sci. 2022, 302, 102615.

    CAS  Google Scholar 

  42. Guo, T. Q.; Oztug, N. A. K.; Han, P. P.; Ivanovski, S.; Gulati, K. Untwining the topography-chemistry interdependence to optimize the bioactivity of nano-engineered titanium implants. Appl. Surf. Sci. 2021, 570, 151083.

    CAS  Google Scholar 

  43. Ivanovski, S.; Haase, H. R.; Bartold, P. M. Isolation and characterization of fibroblasts derived from regenerating human periodontal defects. Arch. Oral Biol. 2001, 46, 679–688.

    CAS  Google Scholar 

  44. Rajpar, I.; Barrett, J. G. Multi-differentiation potential is necessary for optimal tenogenesis of tendon stem cells. Stem Cell Res. Ther. 2020, 11, 152.

    CAS  Google Scholar 

  45. Cosgrove, B. D.; Mui, K. L.; Driscoll, T. P.; Caliari, S. R.; Mehta, K. D.; Assoian, R. K.; Burdick, J. A.; Mauck, R. L. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 2016, 15, 1297–1306.

    CAS  Google Scholar 

  46. Lattouf, R.; Younes, R.; Lutomski, D.; Naaman, N.; Godeau, G.; Senni, K.; Changotade, S. Picrosirius red staining: A useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem. 2014, 62, 751–758.

    Google Scholar 

  47. Chopra, D.; Gulati, K.; Ivanovski, S. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater. 2021, 127, 80–101.

    CAS  Google Scholar 

  48. Guo, T. Q.; Ivanovski, S.; Gulati, K. Optimizing titanium implant nano-engineering via anodization. Mater. Des. 2022, 223, 111110.

    CAS  Google Scholar 

  49. Jayasree, A.; Gómez-Cerezo, M. N.; Verron, E.; Ivanovski, S.; Gulati, K. Gallium-doped dual micro-nano titanium dental implants towards soft-tissue integration and bactericidal functions. Mater. Today Adv. 2022, 16, 100297.

    CAS  Google Scholar 

  50. Arriagada, C.; Silva, P.; Millet, M.; Solano, L.; Moraga, C.; Torres, V. A. Focal adhesion kinase-dependent activation of the early endocytic protein Rab5 is associated with cell migration. J. Biol. Chem. 2019, 294, 12836–12845.

    CAS  Google Scholar 

  51. M D Schaller. Paxillin: A focal adhesion-associated adaptor protein. Oncogene. 2001, 20, 6459–6472.

    CAS  Google Scholar 

  52. Cabezas, M. D.; Meckes, B.; Mirkin, C. A.; Mrksich, M. Subcellular control over focal adhesion anisotropy, independent of cell morphology, dictates stem cell fate. ACS Nano 2019, 13, 11144–11152.

    CAS  Google Scholar 

  53. Hu, Y. L.; Lu, S. Y.; Szeto, K. W.; Sun, J.; Wang, Y. X.; Lasheras, J. C.; Chien, S. FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci. Rep. 2014, 4, 6024.

    CAS  Google Scholar 

  54. Machacek, M.; Hodgson, L.; Welch, C.; Elliott, H.; Pertz, O.; Nalbant, P.; Abell, A.; Johnson, G. L.; Hahn, K. M.; Danuser, G. Coordination of Rho GTPase activities during cell protrusion. Nature 2009, 461, 99–103.

    CAS  Google Scholar 

  55. Padmanabhan, J.; Kinser, E. R.; Stalter, M. A.; Duncan-Lewis, C.; Balestrini, J. L.; Sawyer, A. J.; Schroers, J.; Kyriakides, T. R. Engineering cellular response using nanopatterned bulk metallic glass. ACS Nano 2014, 8, 4366–4375.

    CAS  Google Scholar 

  56. Thorpe, S. D.; Lee, D. A. Dynamic regulation of nuclear architecture and mechanics—A rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus 2017, 8, 287–300.

    CAS  Google Scholar 

  57. Panciera, T.; Azzolin, L.; Cordenonsi, M.; Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 758–770.

    CAS  Google Scholar 

  58. Millar, N. L.; Murrell, G. A. C.; McInnes, I. B. Inflammatory mechanisms in tendinopathy-towards translation. Nat. Rev. Rheumatol. 2017, 13, 110–122.

    CAS  Google Scholar 

  59. Ito, Y.; Toriuchi, N.; Yoshitaka, T.; Ueno-Kudoh, H.; Sato, T.; Yokoyama, S.; Nishida, K.; Akimoto, T.; Takahashi, M.; Miyaki, S. et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc. Natl. Acad. Sci. USA 2010, 107, 10538–10542.

    CAS  Google Scholar 

  60. Nakamichi, R.; Ito, Y.; Inui, M.; Onizuka, N.; Kayama, T.; Kataoka, K.; Suzuki, H.; Mori, M.; Inagawa, M.; Ichinose, S. et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat. Commun. 2016, 7, 12503.

    CAS  Google Scholar 

  61. Gracey, E.; Burssens, A.; Cambré, I.; Schett, G.; Lories, R.; McInnes, I. B.; Asahara, H.; Elewaut, D. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 16, 193–207.

    Google Scholar 

  62. Swift, J.; Ivanovska, I. L.; Buxboim, A.; Harada, T.; Dingal, P. C. D. P.; Pinter, J.; Pajerowski, J. D.; Spinler, K. R.; Shin, J. W.; Tewari, M. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 2013, 341, 1240104.

    Google Scholar 

Download references

Acknowledgements

T. G. and A. J. are supported by the University of Queensland Graduate School Scholarships (UQGSS). K. G. is supported by the National Health and Medical Research Council (NHMRC) Early Career Fellowship (No. APP1140699). The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, the University of Queensland. This work was performed in part at the Queensland node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and microfabrication facilities for Australia’s researchers. This work was supported by International Team for Implantology (ITI) and Australian Dental Research Foundation (ADRF) research grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingping Han, Karan Gulati or Sašo Ivanovski.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Guo, T., Jayasree, A. et al. Tunable nano-engineered anisotropic surface for enhanced mechanotransduction and soft-tissue integration. Nano Res. 16, 7293–7303 (2023). https://doi.org/10.1007/s12274-023-5379-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5379-y

Keywords

Navigation