Skip to main content
Log in

Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional metal carbide or nitride materials (MXenes) are widely used in electromagnetic wave absorption because of their unique structure. Herein, a novel composite preparation strategy has been proposed to design dendritic nanofibers based on the electrostatic spinning methods. The multifunctional MXene nanosheets are used as the dendritic matrix, and magnetic nanoparticles are embedded in the nanosheets as magnetic loss units. Multidimensional nanocomposites have interlaced carbon fiber networks, large-scale magnetically coupled networks, and a lot of multi-heterojunction interface structures, which endow the composites with extraordinary conduction loss, magnetic loss, and polarization loss capabilities, respectively. The impedance matching and loss mechanisms of the composites are improved by optimizing the synergistic relationship between the components and building a suitable structure. The optimum reflection loss (RL) of −54.1 dB is achieved at 2.7 mm and a wide effective absorption bandwidth (EAB, RL below −10 dB) of 7.76 GHz is obtained at a small thickness of 2.1 mm for the nanocomposites. The distinctive microstructures of the nanofibrous membranes give rise to their flexibility, waterproof, and electromagnetic wave absorption performance and endow the nanofibrous membranes potential to be utilized as lightweight, efficient electromagnetic wave protective fabric in harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core—sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

    Article  CAS  Google Scholar 

  2. Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. C. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

    Article  Google Scholar 

  3. Zhao, Z. H.; Zhou, X. J.; Kou, K. C.; Wu, H. J. PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon 2021, 173, 80–90.

    Article  CAS  Google Scholar 

  4. Stam, R.; Yamaguchi-Sekino, S. Occupational exposure to electromagnetic fields from medical sources. Ind. Health 2018, 56, 96–105.

    Article  Google Scholar 

  5. Carpenter, D. O. Human disease resulting from exposure to electromagnetic fields. Rev. Environ. Health 2013, 28, 159–172.

    Article  Google Scholar 

  6. Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaflike MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

    Article  CAS  Google Scholar 

  7. Wang, Z. X.; Jiao, B.; Qing, Y. C.; Nan, H. Y.; Huang, L. Q.; Wei, W.; Peng, Y.; Yuan, F.; Dong, H.; Hou, X. et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 2826–2834.

    Article  CAS  Google Scholar 

  8. Wang, W.; Li, W. Y.; Gao, C. C.; Tian, W. C.; Sun, B.; Yu, D. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties. Appl. Surf. Sci. 2015, 342, 120–126.

    Article  CAS  Google Scholar 

  9. Chen, H. C.; Lee, K. C.; Jin, J. H. Electromagnetic and electrostatic shielding properties of co-weaving-knitting fabrics reinforced composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1249–1256.

    Article  Google Scholar 

  10. Ma, M. L.; Liao, Z. J.; Su, X. W.; Zheng, Q. X.; Liu, Y. Y.; Wang, Y.; Ma, Y.; Wan, F. Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 608, 2203–2212.

    Article  CAS  Google Scholar 

  11. Qian, J. J.; Du, B.; He, C.; Cai, M.; Zhong, X. R.; Xiong, H.; Zeng, S. H.; Shui, A. Z. Multiscale SiCnw and carbon fiber reinforced SiOC ceramic with enhanced mechanical and microwave absorption properties. J. Am. Ceram. Soc. 2022, 105, 3456–3468.

    Article  CAS  Google Scholar 

  12. Li, S. Z.; Ma, L.; Lei, Z. X.; Hua, A.; Zhang, A. Q.; Song, Y. H.; Liu, F. C.; Geng, D. Y.; Liu, W.; Ma, S. et al. Bifunctional two-dimensional nanocomposite for electromagnetic wave absorption and comprehensive anti-corrosion. Carbon 2022, 186, 520–529.

    Article  CAS  Google Scholar 

  13. Ma, L.; Hamidinejad, M.; Zhao, B.; Liang, C. Y.; Park, C. B. Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 2022, 14, 19.

    Article  CAS  Google Scholar 

  14. Zhao, H. Q.; Jin, C. Q.; Lu, P.; Xiao, Z. M.; Cheng, Y. Anchoring well-dispersed magnetic nanoparticles on biomass-derived 2D porous carbon nanosheets for lightweight and efficient microwave absorption. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106773.

    Article  CAS  Google Scholar 

  15. Huang, B.; Hu, H. L.; Lim, S.; Tang, X. Z.; Huang, X. Z.; Liu, Y.; Yue, J. L. Gradient FeNi-SiO2 films on SiC fiber for enhanced microwave absorption performance. J. Alloys Compd. 2022, 897, 163204.

    Article  CAS  Google Scholar 

  16. Duan, N. M.; Shi, Z. Y.; Wang, Z. H.; Zou, B.; Zhang, C. P.; Wang, J. L.; Xi, J. R.; Zhang, X. S.; Zhang, X. Z.; Wang, G. L. Mechanically robust Ti3C2Tx MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Des. 2022, 214, 110382.

    Article  CAS  Google Scholar 

  17. Liu, L. X.; Guo, R.; Gao, J.; Ding, Q.; Fan, Y. C.; Yu, J. Y. Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave. Compos. Commun. 2022, 30, 101094.

    Article  Google Scholar 

  18. Wu, F.; Liu, Z. H.; Wang, J. Q.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 2021, 422, 130591.

    Article  CAS  Google Scholar 

  19. Zhao, H. Q.; Cheng, Y.; Liu, W.; Yang, L. J.; Zhang, B. S.; Wang, L. P.; Ji, G. B.; Xu, Z. J. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019, 11, 24.

    Article  CAS  Google Scholar 

  20. Wu, R. B.; Yang, Z. H.; Fu, M. S.; Zhou, K. In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd 2016, 687, 833–838.

    Article  CAS  Google Scholar 

  21. Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

    Article  CAS  Google Scholar 

  22. Xu, C.; Wu, F.; Duan, L. Q.; Xiong, Z. M.; Xia, Y. L.; Yang, Z. Q.; Sun, M. X.; Xie, A. M. Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl. Electron. Mater. 2020, 2, 1505–1513.

    Article  CAS  Google Scholar 

  23. Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

    Article  Google Scholar 

  24. Li, X.; Yu, L. M.; Zhao, W. K.; Shi, Y. Y.; Yu, L. J.; Dong, Y. B.; Zhu, Y. F.; Fu, Y. Q.; Liu, X. D.; Fu, F. Y. Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem. Eng. J. 2020, 379, 122393.

    Article  CAS  Google Scholar 

  25. Feng, J.; Zong, Y.; Sun, Y.; Zhang, Y.; Yang, X.; Long, G. K.; Wang, Y.; Li, X. H.; Zheng, X. L. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 2018, 345, 441–451.

    Article  CAS  Google Scholar 

  26. Luo, J. L.; Guo, H.; Zhou, J.; Guo, F.; Liu, G. G.; Hao, G. Z.; Jiang, W. Rational construction of heterogeneous interfaces for bimetallic MOFs-derived/rGO composites towards optimizing the electromagnetic wave absorption. Chem. Eng. J. 2022, 429, 132238.

    Article  CAS  Google Scholar 

  27. Li, L.; Li, G. L.; Ouyang, W. J.; Zhang, Y. P.; Zeng, F. Z.; Liu, C. Y.; Lin, Z. Bimetallic MOFs derived FeM(II)-alloy@C composites with high-performance electromagnetic wave absorption. Chem. Eng. J. 2021, 420, 127609.

    Article  CAS  Google Scholar 

  28. Xiong, Y.; Xu, L. L.; Yang, C. X.; Sun, Q. F.; Xu, X. J. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 2020, 8, 18863–18871.

    Article  CAS  Google Scholar 

  29. Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101–6109.

    Article  CAS  Google Scholar 

  30. Jian, X.; Xiao, X. Y.; Deng, L. J.; Tian, W.; Wang, X.; Mahmood, N.; Dou, S. X. Heterostructured nanorings of Fe-Fe3O4@C hybrid with enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 9369–9378.

    Article  CAS  Google Scholar 

  31. Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

    Article  CAS  Google Scholar 

  32. Hou, Z. L.; Du, K. R.; Zhang, Y. Q.; Bi, S.; Zhang, J. Y. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res. 2022, in press, https://doi.org/10.1007/s12274-022-5099-3.

  33. Tang, M.; Zhang, J. Y.; Bi, S.; Hou, Z. L.; Shao, X. H.; Zhan, K. T.; Cao, M. S. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces 2019, 11, 33285–33291.

    Article  CAS  Google Scholar 

  34. Wei, H. J.; Yin, X. W.; Hou, Z. X.; Jiang, F. R.; Xu, H. L.; Li, M. H.; Zhang, L. T.; Cheng, L. F. A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix. J. Eur. Ceram. Soc. 2018, 38, 4189–4197.

    Article  CAS  Google Scholar 

  35. Wei, H. J.; Yin, X. W.; Jiang, F. R.; Hou, Z. X.; Cheng, L. F.; Zhang, L. T. Optimized design of high-temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. J. Alloys Compd. 2020, 823, 153864.

    Article  CAS  Google Scholar 

  36. Guo, Y.; Jian, X.; Zhang, L.; Mu, C. H.; Yin, L. J.; Xie, J. L.; Mahmood, N.; Dou, S. X.; Che, R. C.; Deng, L. J. Plasma-induced FeSiAl@Al2O3@SiO2 core—shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 2020, 384, 123371.

    Article  CAS  Google Scholar 

  37. Zhang, H. Y.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2022, in press, https://doi.org/10.1007/s12274-022-5100-1.

  38. Tian, W.; Li, J. Y.; Liu, Y. F.; Ali, R.; Guo, Y.; Deng, L. J.; Mahmood, N., Jian, X. Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultrahigh microwave absorption properties in low-frequency bands. Nano-Micro Lett. 2021, 13, 161.

    Article  CAS  Google Scholar 

  39. Yu, L. H.; Fan, Z. D.; Shao, Y. L.; Tian, Z. N.; Sun, J. Y.; Liu, Z. F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839.

    Article  Google Scholar 

  40. Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

    Article  CAS  Google Scholar 

  41. Naqvi, S. R.; Shukla, V.; Jena, N. K.; Luo, W.; Ahuja, R. Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Appl. Mater. Today 2020, 19, 100574.

    Article  Google Scholar 

  42. Brady, A.; Liang, K.; Vuong, V. Q.; Sacci, R.; Prenger, K.; Thompson, M.; Matsumoto, R.; Cummings, P.; Irle, S.; Wang, H. W. et al. Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 2021, 15, 2994–3003.

    Article  CAS  Google Scholar 

  43. Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

    Article  CAS  Google Scholar 

  44. Yuan, W. Y.; Cheng, L. F.; An, Y. R.; Lv, S. L.; Wu, H.; Fan, X. L.; Zhang, Y. N.; Guo, X. H.; Tang, J. W. Laminated hybrid junction of sulfur-doped TiO2 and a carbon substrate derived from Ti3C2 MXenes: Toward highly visible light-driven photocatalytic hydrogen evolution. Adv. Sci. 2018, 5, 1700870.

    Article  Google Scholar 

  45. Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

    Article  CAS  Google Scholar 

  46. Deng, R. X.; Chen, B. B.; Li, H. G.; Zhang, K.; Zhang, T.; Yu, Y.; Song, L. X. MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption. Appl. Surf. Sci. 2019, 488, 921–930.

    Article  CAS  Google Scholar 

  47. Zhang, X.; Wang, H. H.; Hu, R.; Huang, C. Y.; Zhong, W. J.; Pan, L. M.; Feng, Y. B.; Qiu, T.; Zhang, C. F.; Yang, J. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2019, 484, 383–391.

    Article  CAS  Google Scholar 

  48. Wei, H. W.; Dong, J. D.; Fang, X. J.; Zheng, W. H.; Sun, Y. T.; Qian, Y.; Jiang, Z. X.; Huang, Y. D. Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos. Sci. Technol. 2019, 169, 52–59.

    Article  CAS  Google Scholar 

  49. Xu, G. F.; Wang, X. X.; Gong, S. D.; Wei, S.; Liu, J. Q.; Xu, Y. H. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology 2018, 29, 355201.

    Article  Google Scholar 

  50. Wang, S. J.; Li, D. S.; Zhou, Y.; Jiang, L. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 2020, 14, 8634–8645.

    Article  CAS  Google Scholar 

  51. Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 2020, 383, 123095.

    Article  CAS  Google Scholar 

  52. Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

    Article  CAS  Google Scholar 

  53. Wang, F. Y.; Sun, Y. Q.; Li, D. R.; Zhong, B.; Wu, Z. G.; Zuo, S. Y.; Yan, D.; Zhuo, R. F.; Feng, J. J.; Yan, P. X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 2018, 134, 264–273.

    Article  CAS  Google Scholar 

  54. Jiang, Y. L.; Fu, X. Y.; Zhang, Z. D.; Du, W.; Xie, P. T.; Cheng, C. B.; Fan, R. H. Enhanced microwave absorption properties of Fe3C/C nanofibers prepared by electrospinning. J. Alloys Compd. 2019, 804, 305–313.

    Article  CAS  Google Scholar 

  55. Hou, C. L.; Jiao, T. F.; Xing, R. R.; Chen, Y.; Zhou, J. X.; Zhang, L. X. Preparation of TiO2 nanoparticles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment. J. Taiwan Inst. Chem. Eng. 2017, 78, 118–126.

    Article  CAS  Google Scholar 

  56. Jin, C.; Wu, Z. C.; Yang, C. D.; Wang, L. Y.; Zhang, R. X.; Xu, H. L.; Che, R. C. Impedance amelioration of coaxial-electrospun TiO2@Fe/C@TiO2 vesicular carbon microtubes with dielectric-magnetic synergy toward highly efficient microwave absorption. Chem. Eng. J. 2022, 433, 133640.

    Article  CAS  Google Scholar 

  57. Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core—shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

    Article  CAS  Google Scholar 

  58. Xie, P. T.; Li, Y. F.; Hou, Q.; Sui, K. Y.; Liu, C. Z.; Fu, X. Y.; Zhang, J. X.; Murugadoss, V.; Fan, J. C.; Wang, Y. P. et al. Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J. Mater. Chem. C 2020, 8, 3029–3039.

    Article  CAS  Google Scholar 

  59. Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wang, S. L.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Interfacial design of sandwichlike CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 2019, 494, 540–550.

    Article  CAS  Google Scholar 

  60. Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

    Article  CAS  Google Scholar 

  61. Wang, H. C.; Xiang, L.; Wei, W.; An, J.; He, J.; Gong, C. H.; Hou, Y. L. Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 42102–42110.

    Article  CAS  Google Scholar 

  62. Wang, Z. Y.; Sun, K.; Xie, P. T.; Hou, Q.; Liu, Y.; Gu, Q. L.; Fan, R. H. Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater. 2020, 185, 412–419.

    Article  CAS  Google Scholar 

  63. Wang, Z. Y.; Sun, K.; Xie, P. T.; Liu, Y.; Gu, Q. L.; Fan, R. H. Permittivity transition from positive to negative in acrylic polyurethane-aluminum composites. Compos. Sci. Technol. 2020, 188, 107969.

    Article  CAS  Google Scholar 

  64. Dai, X. Y.; Du, Y. Z.; Yang, J. Y.; Wang, D.; Gu, J. W.; Li, Y. F.; Wang, S.; Xu, B. B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32.

    Article  CAS  Google Scholar 

  65. Zhong, B.; Wang, C. J.; Yu, Y. L.; Xia, L.; Wen, G. W. Facile fabrication of carbon microspheres decorated with B(OH)3 and α-Fe2O3 nanoparticles: Superior microwave absorption. J. Colloid Interface Sci. 2017, 505, 402–409.

    Article  CAS  Google Scholar 

  66. Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

    Article  CAS  Google Scholar 

  67. Zhang, H. X.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Sun, T.; Liu, X. H.; Bi, L.; Wu, G. L. Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres. Chem. Eng. J. 2021, 421, 129960.

    Article  CAS  Google Scholar 

  68. Cheng, Y.; Zhao, H. Q.; Lv, H. L.; Shi, T. F.; Ji, G. B.; Hou, Y. L. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater. 2020, 6, 1900796.

    Article  CAS  Google Scholar 

  69. Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

    Article  Google Scholar 

  70. Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

    Article  CAS  Google Scholar 

  71. Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C.; Yang, H. J.; Fang, X. Y.; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 2018, 6, 4586–4602.

    Article  CAS  Google Scholar 

  72. He, P.; Cao, M. S.; Cao, W. Q.; Yuan, J. Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 2021, 13, 115.

    Article  Google Scholar 

  73. Zhao, Y. P.; Zhang, H.; Yang, X.; Huang, H.; Zhao, G. L.; Cong, T. Z.; Zuo, X. Q.; Fan, Z.; Yang, S. T.; Pan, L. J. In situ construction of hierarchical core—shell Fe3O4@C nanoparticles—helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 2021, 171, 395–408.

    Article  CAS  Google Scholar 

  74. Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A. N.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

    Article  CAS  Google Scholar 

  75. Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

    Article  CAS  Google Scholar 

  76. Yan, F.; Zhang, S.; Zhang, X.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. J. Mater. Chem. C 2018, 6, 12781–12787.

    Article  CAS  Google Scholar 

  77. Tao, J. Q.; Zhou, J. T.; Yao, Z. J.; Jiao, Z. B.; Wei, B.; Tan, R. Y.; Li, Z. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021, 172, 542–555.

    Article  CAS  Google Scholar 

  78. Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

    Article  CAS  Google Scholar 

  79. Qiao, J.; Zhang, X.; Xu, D. M.; Kong, L. X.; Lv, L. F.; Yang, F.; Wang, F. L.; Liu, W.; Liu, J. R. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 2020, 380, 122591.

    Article  CAS  Google Scholar 

  80. Liu, L. L.; Zhang, S.; Yan, F.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 14108–14115.

    Article  CAS  Google Scholar 

  81. Wang, J. W.; Wang, B. B.; Wang, Z.; Chen, L.; Gao, C. H.; Xu, B. H.; Jia, Z. R.; Wu, G. L. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 2021, 586, 479–490.

    Article  CAS  Google Scholar 

  82. Zhang, D. Q.; Zhang, H. B.; Cheng, J. Y.; Raza, H.; Liu, T. T.; Liu, B.; Ba, X. W.; Zheng, G. P.; Chen, G. H.; Cao, M. S. Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Colloid Interface Sci. 2020, 8, 5923–5933.

    CAS  Google Scholar 

  83. Gao, Z. G.; Jia, Z. R.; Wang, K. K.; Liu, X. H.; Bi, L.; Wu, G. L. Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 2020, 402, 125951.

    Article  CAS  Google Scholar 

  84. Li, Q. Q.; Zhao, Y. H.; Li, X. H.; Wang, L.; Li, X.; Zhang, J.; Che, R. C. MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 2020, 16, 2003905.

    Article  CAS  Google Scholar 

  85. Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Txcomposites as electromagnetic wave absorbers. Chem. Eng. J. 2021, 422, 130079.

    Article  CAS  Google Scholar 

  86. Yue, Y.; Wang, Y. X.; Xu, X. D.; Cui, B. W.; Yao, Z. Q.; Wang, Y. X.; Wang, C. J.; Wang, Y. P.; Wang, Y. B. Continuous growth of carbon nanotubes on the surface of carbon fibers for enhanced electromagnetic wave absorption properties. Ceram. Int. 2022, 48, 1869–1878.

    Article  CAS  Google Scholar 

  87. Wang, J.; Lin, X. Y.; Zhang, R. X.; Chu, Z. Y.; Huang, Z. Y. Transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) and MX2-CIP composites: Promising materials with high microwave absorption performance. J. Alloys Compd. 2018, 743, 26–35.

    Article  CAS  Google Scholar 

  88. Zhao, B.; Deng, J. S.; Liang, L. Y.; Zuo, C. Y. X.; Bai, Z. Y.; Guo, X. Q.; Zhang, R. Lightweight porous Co3O4 and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties. CrystEngComm 2017, 19, 6095–6106.

    Article  CAS  Google Scholar 

  89. Zhang, X. C.; Liu, M. J.; Xu, J.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 2022, 433, 133794.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Shandong Province (No. ZR2019YQ24), Taishan Scholars and Young Experts Program of Shandong Province (No. tsqn202103057), and the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural-Functional Polymer Composites).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zirui Jia or Guanglei Wu.

Electronic supplementary material

12274_2022_5368_MOESM1_ESM.pdf

Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers

Supplementary material, approximately 23.2 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Jia, Z., Zhang, Y. et al. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 16, 3395–3407 (2023). https://doi.org/10.1007/s12274-022-5368-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5368-1

Keywords

Navigation