Skip to main content
Log in

Nanomedicine-based treatment: An emerging therapeutical strategy for pulmonary hypertension

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (PH) can cause breathing difficulty, a rapid decline of exercise capacity, heart failure, and eventually death of the patients. The latest epidemiological study demonstrates that PH has a much higher incidence than previously thought. PH is still a highly fatal disease due to the many disadvantages of the current drugs, such as short half-life, lack of targeting, and potent side effects. The PH pathological features offer great opportunities for nanomedicines for PH. Recently, emerging nanomedicines demonstrated great advantages in the therapeutic effect of PH by enhancing the accumulation of drugs in PH lesion, optimizing drug efficacy, and minimizing drug side effects. However, this promising field of cross-cutting research is far from being widely explored due to the huge professional barriers. To solve this problem, we provide a comprehensive review for the latest progresses of nanomedicines in the treatment of PH. Firstly, we systematical summarized the PH pathological features and the current clinical drug treatment of PH. The advantages of nanomedicines are also deeply discussed in the treatment of PH. Subsequently, we focused on the research progresses of nanomedicines in PH through three aspects: advanced nano-drug delivery system for traditional drugs and new target drugs, gene therapy-based nanomedicines, and other nanomedicines for the treatment of PH. Finally, we also discussed the prospects and challenges for the clinical application of nanomedicines in PH, and provided directions for the research and development of nanomedicines for PH treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poch, D.; Mandel, J. Pulmonary hypertension. Ann. Intern. Med. 2021, 174, ITC49–ITC64.

    Google Scholar 

  2. Stewart, S.; Strange, G. A.; Playford, D. The challenge of an expanded therapeutic window in pulmonary hypertension. Nat. Rev. Cardiol. 2020, 17, 195–197.

    Google Scholar 

  3. Hoeper, M. M.; Humbert, M.; Souza, R.; Idrees, M.; Kawut, S. M.; Sliwa-Hahnle, K.; Jing, Z. C.; Gibbs, J. S. R. A global view of pulmonary hypertension. Lancet Resp. Med. 2016, 4, 306–322.

    Google Scholar 

  4. Naeije, R.; Richter, M. J.; Rubin, L. J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J. 2022, 59, 2102334.

    Google Scholar 

  5. Ruopp, N. F.; Cockrill, B. A. Diagnosis and treatment of pulmonary arterial hypertension: A review. JAMA 2022, 327, 1379–1391.

    CAS  Google Scholar 

  6. Kolaitis, N. A.; Lammi, M.; Mazimba, S.; Feldman, J.; McConnell, W.; Sager, J. S.; Raval, A. A.; Simon, M. A.; De Marco, T. HIV-associated pulmonary arterial hypertension: A report from the pulmonary hypertension association registry. Am. J. Respir. Crit. Care. Med. 2022, 205, 1121–1124.

    Google Scholar 

  7. Omote, K.; Sorimachi, H.; Obokata, M.; Reddy, Y. N. V.; Verbrugge, F. H.; Omar, M.; DuBrock, H. M.; Redfield, M. M.; Borlaug, B. A. Pulmonary vascular disease in pulmonary hypertension due to left heart disease: Pathophysiologic implications. Eur. Heart J. 2022, 43, 3417–3431.

    Google Scholar 

  8. Fujiwara, T.; Takeda, N.; Hara, H.; Ishii, S.; Numata, G.; Tokiwa, H.; Maemura, S.; Suzuki, T.; Takiguchi, H.; Kubota, Y. et al. Three-dimensional visualization of hypoxia-induced pulmonary vascular remodeling in mice. Circulation 2021, 144, 1452–1455.

    Google Scholar 

  9. Delcroix, M.; Torbicki, A.; Gopalan, D.; Sitbon, O.; Klok, F. A.; Lang, I.; Jenkins, D.; Kim, N. H.; Humbert, M.; Jais, X. et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2021, 57, 2002828.

    Google Scholar 

  10. Satoh, T.; Wang, L. F.; Espinosa-Diez, C.; Wang, B.; Hahn, S. A.; Noda, K.; Rochon, E. R.; Dent, M. R.; Levine, A. R.; Baust, J. J. et al. Metabolic syndrome mediates ROS-miR-193b-NFYA-dependent downregulation of soluble guanylate cyclase and contributes to exercise-induced pulmonary hypertension in heart failure with preserved ejection fraction. Circulation 2021, 144, 615–637.

    CAS  Google Scholar 

  11. Stites, E.; Kumar, D.; Olaitan, O.; John Swanson, S.; Leca, N.; Weir, M.; Bromberg, J.; Melancon, J.; Agha, I.; Fattah, H. et al. High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury. Am. J. Transplant. 2020, 20, 2491–2498.

    CAS  Google Scholar 

  12. Lechuga-Vieco, A. V.; Latorre-Pellicer, A.; Calvo, E.; Torroja, C.; Pellico, J.; Acín-Pérez, R.; García-Gil, M. L.; Santos, A.; Bagwan, N.; Bonzon-Kulichenko, E. et al. Heteroplasmy of wild-type mitochondrial DNA variants in mice causes metabolic heart disease with pulmonary hypertension and frailty. Circulation 2022, 145, 1084–1101.

    CAS  Google Scholar 

  13. Humbert, M.; McLaughlin, V.; Gibbs, J. S. R.; Gomberg-Maitland, M.; Hoeper, M. M.; Preston, I. R.; Souza, R.; Waxman, A.; Escribano Subias, P.; Feldman, J. et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2021, 384, 1204–1215.

    CAS  Google Scholar 

  14. Toshner, M.; Rothman, A. IL-6 in pulmonary hypertension: Why novel is not always best. Eur. Respir. J. 2020, 55, 2000314.

    CAS  Google Scholar 

  15. Nie, X. W.; Shen, C. Y.; Tan, J. X.; Wu, Z. Y.; Wang, W.; Chen, Y.; Dai, Y. A.; Yang, X. S.; Ye, S. G.; Chen, J. Y. et al. Periostin: A potential therapeutic target for pulmonary hypertension? Circ. Res. 2020, 127, 1138–1152.

    CAS  Google Scholar 

  16. Li, D.; Shao, N. Y.; Moonen, J. R.; Zhao, Z. X.; Shi, M. Y.; Otsuki, S.; Wang, L. L.; Nguyen, T.; Yan, E.; Marciano, D. P. et al. ALDH1A3 coordinates metabolism with gene regulation in pulmonary arterial hypertension. Circulation 2021, 143, 2074–2090.

    CAS  Google Scholar 

  17. Agarwal, S.; de Jesus Perez, V. A. In defense of the nucleus: NUDT1 and oxidative DNA damage in pulmonary arterial hypertension. Am. J. Respir. Crit. Care. Med. 2021, 203, 541–542.

    CAS  Google Scholar 

  18. Maron, B. A.; Abman, S. H.; Elliott, C. G.; Frantz, R. P.; Hopper, R. K.; Horn, E. M.; Nicolls, M. R.; Shlobin, O. A.; Shah, S. J.; Kovacs, G. et al. Pulmonary arterial hypertension: Diagnosis, treatment, and novel advances. Am. J. Respir. Crit. Care. Med. 2021, 203, 1472–1487.

    CAS  Google Scholar 

  19. Humbert M.; Lau E. M. T. Risk stratification in pulmonary arterial hypertension: Do not forget the patient perspective. Am J Respir Crit Care Med. 2021, 203, 675–677.

    Google Scholar 

  20. Boucly, A.; Savale, L.; Jaïs, X.; Bauer, F.; Bergot, E.; Bertoletti, L.; Beurnier, A.; Bourdin, A.; Bouvaist, H.; Bulifon, S. et al. Association between initial treatment strategy and long-term survival in pulmonary arterial hypertension. Am. J. Respir. Crit. Care. Med. 2021, 204, 842–854.

    CAS  Google Scholar 

  21. Segura-Ibarra, V.; Amione-Guerra, J.; Cruz-Solbes, A. S.; Cara, F. E.; Iruegas-Nunez, D. A.; Wu, S. H.; Youker, K. A.; Bhimaraj, A.; Torre-Amione, G.; Ferrari, M. et al. Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. Int. J. Pharm. 2017, 524, 257–267.

    CAS  Google Scholar 

  22. Deng, Z. C.; Kalin, G. T.; Shi, D. L.; Kalinichenko, V. V. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases. Am. J. Respir. Cell. Mol. Biol. 2021, 64, 292–307.

    CAS  Google Scholar 

  23. Keshavarz, A.; Alobaida, A.; McMurtry, I. F.; Nozik-Grayck, E.; Stenmark, K. R.; Ahsan, F. CAR, a homing peptide, prolongs pulmonary preferential vasodilation by increasing pulmonary retention and reducing systemic absorption of liposomal fasudil. Mol. Pharm. 2019, 16, 3414–3429.

    CAS  Google Scholar 

  24. Luo, X. M.; Yan, C.; Feng, Y. M. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv. Drug Deliv. Rev. 2021, 172, 234–248.

    CAS  Google Scholar 

  25. Cheng, Z.; Li, M. Y.; Dey, R.; Chen, Y. H. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85.

    Google Scholar 

  26. Evans, C. E.; Cober, N. D.; Dai, Z. Y.; Stewart, D. J.; Zhao, Y. Y. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur. Respir. J. 2021, 58, 2003957.

    CAS  Google Scholar 

  27. Simons M. Fibroblast growth factors: The keepers of endothelial normalcy. J Clin Invest. 2021, 131, e152716.

    CAS  Google Scholar 

  28. Triposkiadis F.; Xanthopoulos A.; Skoularigis J.; Starling R. C. Therapeutic augmentation of NO-sGC-cGMP signalling: Lessons learned from pulmonary arterial hypertension and heart failure. Heart Fail Rev. 2022, 27, 1991–2003.

    CAS  Google Scholar 

  29. Barnes, H.; Yeoh, H. L.; Fothergill, T.; Burns, A.; Humbert, M.; Williams, T. Prostacyclin for pulmonary arterial hypertension. Cochrane Database Syst. Rev. 2019, 5, CD012785.

    Google Scholar 

  30. Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Ravichandran, A.; Engel, P.; Bajwa, A.; Allen, R.; Feldman, J.; Argula, R.; Smith, P. et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N. Engl. J. Med. 2021, 384, 325–334.

    CAS  Google Scholar 

  31. Nathan, S. D.; Waxman, A.; Rajagopal, S.; Case, A.; Johri, S.; DuBrock, H.; De La Zerda, D. J.; Sahay, S.; King, C.; Melendres-Groves, L. et al. Inhaled treprostinil and forced vital capacity in patients with interstitial lung disease and associated pulmonary hypertension: A post-hoc analysis of the INCREASE study. Lancet Resp. Med. 2021, 9, 1266–1274.

    CAS  Google Scholar 

  32. Ogo, T.; Shimokawahara, H.; Kinoshita, H.; Sakao, S.; Abe, K.; Matoba, S.; Motoki, H.; Takama, N.; Ako, J.; Ikeda, Y. et al. Selexipag for the treatment of chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2022, 60, 2101694.

    CAS  Google Scholar 

  33. Tello, K.; Kremer, N.; Richter, M. J.; Gall, H.; Muenks, J.; Ghofrani, A.; Schermuly, R.; Naeije, R.; Kojonazarov, B.; Seeger, W. Inhaled iloprost improves right ventricular load-independent contractility in pulmonary hypertension. Am. J. Respir. Crit. Care. Med. 2022, 206, 111–114.

    CAS  Google Scholar 

  34. Hoeper, M. M.; Al-Hiti, H.; Benza, R. L.; Chang, S. A.; Corris, P. A.; Gibbs, J. S. R.; Grünig, E.; Jansa, P.; Klinger, J. R.; Langleben, D. et al. Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): A multicentre, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 9, 573–584.

    CAS  Google Scholar 

  35. Barnes, H.; Brown, Z.; Burns, A.; Williams, T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst. Rev. 2019, 1, CD012621.

    Google Scholar 

  36. Tzoumas, N.; Farrah, T. E.; Dhaun, N.; Webb, D. J. Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease. Br. J. Pharmacol. 2020, 177, 5467–5488.

    CAS  Google Scholar 

  37. Boutou, A. K.; Pitsiou, G. Treatment of pulmonary hypertension with riociguat: A review of current evidence and future perspectives. Expert Opin. Pharmacother. 2020, 21, 1145–1155.

    CAS  Google Scholar 

  38. Frey, R.; Becker, C.; Saleh, S.; Unger, S.; van der Mey, D.; Mück, W. Clinical pharmacokinetic and pharmacodynamic profile of riociguat. Clin. Pharmacokinet. 2018, 57, 647–661.

    CAS  Google Scholar 

  39. Cooper, T. J.; Cleland, J. G. F.; Guazzi, M.; Pellicori, P.; Ben Gal, T.; Amir, O.; Al-Mohammad, A.; Clark, A. L.; McConnachie, A.; Steine, K. et al. Effects of sildenafil on symptoms and exercise capacity for heart failure with reduced ejection fraction and pulmonary hypertension (the SilHF study): A randomized placebo-controlled multicentre trial. Eur. J. Heart Fail. 2022, 24, 1239–1248.

    CAS  Google Scholar 

  40. Sitbon, O.; Cottin, V.; Canuet, M.; Clerson, P.; Gressin, V.; Perchenet, L.; Bertoletti, L.; Bouvaist, H.; Picard, F.; Prévot, G. et al. Initial combination therapy of macitentan and tadalafil in pulmonary arterial hypertension. Eur. Respir. J. 2020, 56, 2000673.

    Google Scholar 

  41. Liu, C.; Chen, J. M.; Gao, Y. Q.; Deng, B.; Liu, K. S. Endothelin receptor antagonists for pulmonary arterial hypertension. Cochrane Database Syst. Rev. 2021, 3, CD004434.

    Google Scholar 

  42. Bellaye, P. S.; Yanagihara, T.; Granton, E.; Sato, S.; Shimbori, C.; Upagupta, C.; Imani, J.; Hambly, N.; Ask, K.; Gauldie, J. et al. Macitentan reduces progression of TGF-β1-induced pulmonary fibrosis and pulmonary hypertension. Eur. Respir. J. 2018, 52, 1701857.

    Google Scholar 

  43. Lee, H. J.; Kwon, Y. B.; Kang, J. H.; Oh, D. W.; Park, E. S.; Rhee, Y. S.; Kim, J. Y.; Shin, D. H.; Kim, D. W.; Park, C. W. Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. J. Control. Release 2021, 329, 468–481.

    CAS  Google Scholar 

  44. Preston, I. R.; Burger, C. D.; Bartolome, S.; Safdar, Z.; Krowka, M.; Sood, N.; Ford, H. J.; Battarjee, W. F.; Chakinala, M. M.; Gomberg-Maitland, M. et al. Ambrisentan in portopulmonary hypertension: A multicenter, open-label trial. J. Heart Lung. Transplant. 2020, 39, 464–472.

    Google Scholar 

  45. Cascino, T. M.; McLaughlin, V. V. Upfront combination therapy for pulmonary arterial hypertension: Time to be more ambitious than AMBITION. Am. J. Respir. Crit. Care. Med. 2021, 204, 756–759.

    Google Scholar 

  46. White, R. J.; Vonk-Noordegraaf, A.; Rosenkranz, S.; Oudiz, R. J.; McLaughlin, V. V.; Hoeper, M. M.; Grünig, E.; Ghofrani, H. A.; Chakinala, M. M.; Barberà, J. A. et al. Clinical outcomes stratified by baseline functional class after initial combination therapy for pulmonary arterial hypertension. Respir. Res. 2019, 20, 208.

    Google Scholar 

  47. D’Alto, M.; Badagliacca, R.; Argiento, P.; Romeo, E.; Farro, A.; Papa, S.; Sarubbi, B.; Russo, M. G.; Vizza, C. D.; Golino, P. et al. Risk reduction and right heart reverse remodeling by upfront triple combination therapy in pulmonary arterial hypertension. Chest 2020, 157, 376–383.

    Google Scholar 

  48. Chin, K. M.; Sitbon, O.; Doelberg, M.; Feldman, J.; Gibbs, J. S. R.; Grünig, E.; Hoeper, M. M.; Martin, N.; Mathai, S. C.; McLaughlin, V. V. et al. Three- versus two-drug therapy for patients with newly diagnosed pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2021, 78, 1393–1403.

    CAS  Google Scholar 

  49. Kuwana, M.; Blair, C.; Takahashi, T.; Langley, J.; Coghlan, J. G. Initial combination therapy of ambrisentan and tadalafil in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) in the modified intention-to-treat population of the AMBITION study: Post hoc analysis. Ann. Rheum. Dis. 2020, 79, 626–634.

    Google Scholar 

  50. Stollfuss, B.; Richter, M.; Drömann, D.; Klose, H.; Schwaiblmair, M.; Gruenig, E.; Ewert, R.; Kirchner, M. C.; Kleinjung, F.; Irrgang, V. et al. Digital tracking of physical activity, heart rate, and inhalation behavior in patients with pulmonary arterial hypertension treated with inhaled iloprost: Observational study (VENTASTEP). J. Med. Internet. Res. 2021, 23, e25163.

    Google Scholar 

  51. Yanaka, K.; Guillien, A.; Soumagne, T.; Benet, J.; Piliero, N.; Picard, F.; Pison, C.; Sitbon, O.; Bouvaist, H.; Degano, B. Transition from intravenous epoprostenol to selexipag in pulmonary arterial hypertension: A word of caution. Eur. Respir. J. 2020, 55, 1902418.

    Google Scholar 

  52. Lau, E. M. T.; Giannoulatou, E.; Celermajer, D. S.; Humbert, M. Epidemiology and treatment of pulmonary arterial hypertension. Nat. Rev. Cardiol. 2017, 14, 603–614.

    CAS  Google Scholar 

  53. Mandras, S. A.; Mehta, H. S.; Vaidya, A. Pulmonary hypertension: A brief guide for clinicians. Mayo. Clin. Proc. 2020, 95, 1978–1988.

    CAS  Google Scholar 

  54. Wang, X. W.; Zhong, X. Y.; Li, J. X.; Liu, Z.; Cheng, L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 2021, 50, 8669–8742.

    CAS  Google Scholar 

  55. Thenappan, T.; Ormiston, M. L.; Ryan, J. J.; Archer, S. L. Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ 2018, 360, j5492.

    Google Scholar 

  56. Ochoa, C. D.; Wu, R. F.; Terada, L. S. ROS signaling and ER stress in cardiovascular disease. Mol. Aspects Med. 2018, 63, 18–29.

    CAS  Google Scholar 

  57. Kulkarni, J. A.; Witzigmann, D.; Thomson, S. B.; Chen, S.; Leavitt, B. R.; Cullis, P. R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021, 16, 630–643.

    CAS  Google Scholar 

  58. Ni, R.; Zhou, J. L.; Hossain, N.; Chau, Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv. Drug Deliv. Rev. 2016, 106, 3–26.

    CAS  Google Scholar 

  59. Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555.

    CAS  Google Scholar 

  60. Pullamsetti, S. S.; Schermuly, R.; Ghofrani, A.; Weissmann, N.; Grimminger, F.; Seeger, W. Novel and emerging therapies for pulmonary hypertension. Am. J. Respir. Crit. Care. Med. 2014, 189, 394–400.

    CAS  Google Scholar 

  61. Stenmark, K. R.; Hu, C. J.; Pullamsetti, S. S. How many FOXs are there on the road to pulmonary hypertension? Am. J. Respir. Crit. Care. Med. 2018, 198, 704–707.

    CAS  Google Scholar 

  62. Savai, R.; Al-Tamari, H. M.; Sedding, D.; Kojonazarov, B.; Muecke, C.; Teske, R.; Capecchi, M. R.; Weissmann, N.; Grimminger, F.; Seeger, W. et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat. Med. 2014, 20, 1289–1300.

    CAS  Google Scholar 

  63. Pradhan, A.; Dunn, A.; Ustiyan, V.; Bolte, C.; Wang, G. L.; Whitsett, J. A.; Zhang, Y. F.; Porollo, A.; Hu, Y. C.; Xiao, R. et al. The S52F FOXF1 mutation inhibits STAT3 signaling and causes alveolar capillary dysplasia. Am. J. Respir. Crit. Care. Med. 2019, 200, 1045–1056.

    CAS  Google Scholar 

  64. Sun, F.; Wang, G. L.; Pradhan, A.; Xu, K.; Gomez-Arroyo, J.; Zhang, Y. F.; Kalin, G. T.; Deng, Z. C.; Vagnozzi, R. J.; He, H. et al. Nanoparticle delivery of STAT3 alleviates pulmonary hypertension in a mouse model of alveolar capillary dysplasia. Circulation 2021, 144, 539–555.

    CAS  Google Scholar 

  65. Lu, T. X.; Rothenberg, M. E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207.

    CAS  Google Scholar 

  66. Carregal-Romero, S.; Fadón, L.; Berra, E.; Ruíz-Cabello, J. MicroRNA nanotherapeutics for lung targeting. Insights into pulmonary hypertension. Int. J. Mol. Sci. 2020, 21, 3253.

    CAS  Google Scholar 

  67. Ma, W. R.; Qiu, Z. H.; Bai, Z. Y.; Dai, Y.; Li, C.; Chen, X.; Song, X. X.; Shi, D. Y.; Zhou, Y. Z.; Pan, Y. J. et al. Inhibition of microRNA-30a alleviates vascular remodeling in pulmonary arterial hypertension. Mol. Ther. Nucl. Acids 2021, 26, 678–693.

    CAS  Google Scholar 

  68. Hall, I. F.; Climent, M.; Quintavalle, M.; Farina, F. M.; Schorn, T.; Zani, S.; Carullo, P.; Kunderfranco, P.; Civilini, E.; Condorelli, G. et al. Circ_Lrp6, a circular RNA enriched in vascular smooth muscle cells, acts as a sponge regulating miRNA-145 function. Circ. Res. 2019, 124, 498–510.

    CAS  Google Scholar 

  69. Chen Z.; Zeng H. Z.; Guo Y.; Liu P.; Pan H.; Deng A. M.; Hu J. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res. 2010, 29, 151.

    Google Scholar 

  70. Duygu, B.; Juni, R.; Ottaviani, L.; Bitsch, N.; Wit, J. B. M.; de Windt, L. J.; da Costa Martins, P. A. Comparison of different chemically modified inhibitors of miR-199b in vivo. Biochem. Pharmacol. 2019, 159, 106–115.

    CAS  Google Scholar 

  71. Gebert, M.; Jaśkiewicz, M.; Moszyńska, A.; Collawn, J. F.; Bartoszewski, R. The effects of single nucleotide polymorphisms in cancer RNAi therapies. Cancers 2020, 12, 3119.

    CAS  Google Scholar 

  72. McLendon, J. M.; Joshi, S. R.; Sparks, J.; Matar, M.; Fewell, J. G.; Abe, K.; Oka, M.; McMurtry, I. F.; Gerthoffer, W. T. Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J. Control. Release 2015, 210, 67–75.

    CAS  Google Scholar 

  73. Sindi, H. A.; Russomanno, G.; Satta, S.; V. B. Abdul-Salam, Jo, K. B.; B. Qazi-Chaudhry, Ainscough, A. J.; Szulcek, R.; Bogaard, H. J.; Morgan, C. C.; Pullamsetti, S. S.; Alzaydi, M. M. et al. Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat. Commun. 2020, 11, 1185.

    CAS  Google Scholar 

  74. Abdul-Salam, V. B.; Russomanno, G.; Chien-Nien, C.; Mahomed, A. S.; Yates, L. A.; Wilkins, M. R.; Zhao, L.; Gierula, M.; Dubois, O.; Schaeper, U. et al. CLIC4/Arf6 pathway a new lead in BMPRII inhibition in pulmonary hypertension. Circ. Res. 2019, 124, 52–65.

    CAS  Google Scholar 

  75. Sun, C. K.; Zhen, Y. Y.; Lu, H. I.; Sung, P. H.; Chang, L. T.; Tsai, T. H.; Sheu, J. J.; Chen, Y. L.; Chua, S.; Chang, H. W. et al. Reducing TRPC1 expression through liposome-mediated siRNA delivery markedly attenuates hypoxia-induced pulmonary arterial hypertension in a murine model. Stem Cells Int. 2014, 2014, 316214.

    Google Scholar 

  76. Du, J.; Xu, Z.; Liu, Q.; Yang, Y.; Qian, H.; Hu, M. D.; Fan, Y.; Li, Q.; Yao, W.; Li, H. L. et al. ATG101 single-stranded antisense RNA-loaded triangular DNA nanoparticles control human pulmonary endothelial growth via regulation of cell macroautophagy. ACS Appl. Mater. Interfaces 2017, 9, 42544–42555.

    CAS  Google Scholar 

  77. You, Z. C.; Qian, H.; Wang, C. Z.; He, B. F.; Yan, J. W.; Mao, C. D.; Wang, G. S. Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA. Biomaterials 2015, 67, 137–150.

    CAS  Google Scholar 

  78. Yu, Q. J.; Tai, Y. Y.; Tang, Y.; Zhao, J. S.; Negi, V.; Gulley, M. K.; Pilli, J.; Sun, W.; Brugger, K.; Mayr, J. et al. BOLA (BolA family member 3) deficiency controls endothelial metabolism and glycine homeostasis in pulmonary hypertension. Circulation 2019, 139, 2238–2255.

    CAS  Google Scholar 

  79. Dahlman, J. E.; Barnes, C.; Khan, O. F.; Thiriot, A.; Jhunjunwala, S.; Shaw, T. E.; Xing, Y. P.; Sager, H. B.; Sahay, G.; Speciner, L. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 2014, 9, 648–655.

    CAS  Google Scholar 

  80. Wang, L. L.; Chang, C. C.; Sylvers, J.; Yuan, F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2021, 138, 107731.

    CAS  Google Scholar 

  81. Teng, C.; Li, B. B.; Lin, C. S.; Xing, X. Y.; Huang, F. F.; Yang, Y.; Li, Y.; Azevedo, H. S.; He, W. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J. Control. Release 2022, 341, 591–604.

    CAS  Google Scholar 

  82. Fan, Y.; Gu, X.; Zhang, J.; Sinn, K.; Klepetko, W.; Wu, N.; Foris, V.; Solymosi, P.; Kwapiszewska, G.; Kuebler, W. M. TWIST1 drives smooth muscle cell proliferation in pulmonary hypertension via loss of GATA-6 and BMPR2. Am. J. Respir. Crit. Care. Med. 2020, 202, 1283–1296.

    CAS  Google Scholar 

  83. Mei, L.; Zheng, Y. M.; Song, T. Y.; Yadav, V. R.; Joseph, L. C.; Truong, L.; Kandhi, S.; Barroso, M. M.; Takeshima, H.; Judson, M. A. et al. Rieske iron-sulfur protein induces FKBP12.6/RyR2 complex remodeling and subsequent pulmonary hypertension through NF-κB/cyclin D1 pathway. Nat. Commun. 2020, 11, 3527.

    CAS  Google Scholar 

  84. Kimura, S.; Egashira, K.; Chen, L.; Nakano, K.; Iwata, E.; Miyagawa, M.; Tsujimoto, H.; Hara, K.; Morishita, R.; Sueishi, K. et al. Nanoparticle-mediated delivery of nuclear factor κB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 2009, 53, 877–883.

    CAS  Google Scholar 

  85. de Lázaro, I.; Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021, 20, 1469–1479.

    Google Scholar 

  86. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Åberg, C.; Mahon, E.; Dawson, K. A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143.

    CAS  Google Scholar 

  87. Ryu, J. H.; Yoon, H. Y.; Sun, I. C.; Kwon, I. C.; Kim, K. Tumortargeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater. 2020, 32, 2002197.

    CAS  Google Scholar 

  88. Safinya, C. R.; Ewert, K. K. Liposomes derived from molecular vases. Nature 2012, 489, 372–374.

    CAS  Google Scholar 

  89. Li, C. X.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X.; Hou, L. Y.; Xiong, L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 2018, 30, 1706150.

    Google Scholar 

  90. Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and bioorthogonal chemistry: The future of active targeting of nanoparticles for nanomedicines? Chem. Rev. 2022, 122, 340–384.

    CAS  Google Scholar 

  91. Zhu, G. H.; Gray, A. B. C.; Patra, H. K. Nanomedicine: Controlling nanoparticle clearance for translational success. Trends Pharmacol. Sci. 2022, 43, 709–711.

    CAS  Google Scholar 

  92. Zhang, N. N.; Shen, X. X.; Liu, K.; Nie, Z. H.; Kumacheva, E. Polymer-tethered nanoparticles: From surface engineering to directional self-assembly. Acc. Chem. Res. 2022, 55, 1503–1513.

    CAS  Google Scholar 

  93. Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844–6892.

    CAS  Google Scholar 

  94. DelRe, C.; Chang, B.; Jayapurna, I.; Hall, A.; Wang, A.; Zolkin, K.; Xu, T. Synergistic enzyme mixtures to realize near-complete depolymerization in biodegradable polymer/additive blends. Adv. Mater. 2021, 33, 2105707.

    CAS  Google Scholar 

  95. Gigmes, D.; Trimaille, T. Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Adv. Colloid Interface Sci. 2021, 294, 102483.

    CAS  Google Scholar 

  96. Zhang, Z.; Qiu, N. S.; Wu, S. L.; Liu, X.; Zhou, Z. X.; Tang, J. B.; Liu, Y. P.; Zhou, R. H.; Shen, Y. Q. Dose-independent transfection of hydrophobized polyplexes. Adv. Mater. 2021, 33, 2102219.

    CAS  Google Scholar 

  97. Ozer, I.; Pitoc, G. A.; Layzer, J. M.; Moreno, A.; Olson, L. B.; Layzer, K. D.; Hucknall, A. M.; Sullenger, B. A.; Chilkoti, A. PEG-like brush polymer conjugate of RNA aptamer that shows reversible anticoagulant activity and minimal immune response. Adv. Mater. 2022, 34, 2107852.

    CAS  Google Scholar 

  98. Zhu, S. S.; Xing, H.; Gordiichuk, P.; Park, J.; Mirkin, C. A. PLGA spherical nucleic acids. Adv. Mater. 2018, 30, 1707113.

    Google Scholar 

  99. Hwang, D.; Ramsey, J. D.; Kabanov, A. V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118.

    CAS  Google Scholar 

  100. Brilmayer, R.; Förster, C.; Zhao, L.; Andrieu-Brunsen, A. Recent trends in nanopore polymer functionalization. Curr. Opin. Biotechnol. 2020, 63, 200–209.

    CAS  Google Scholar 

  101. Liu, X. Y.; Sun, J. W.; Gao, W. P. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018, 178, 413–434.

    CAS  Google Scholar 

  102. Arumughan, V.; Nypelö, T.; Hasani, M.; Larsson, A. Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv. Colloid Interface Sci. 2021, 298, 102529.

    CAS  Google Scholar 

  103. Ishihara, T.; Hayashi, E.; Yamamoto, S.; Kobayashi, C.; Tamura, Y.; Sawazaki, R.; Tamura, F.; Tahara, K.; Kasahara, T.; Ishihara, T. et al. Encapsulation of beraprost sodium in nanoparticles: Analysis of sustained release properties, targeting abilities and pharmacological activities in animal models of pulmonary arterial hypertension. J. Control. Release 2015, 197, 97–104.

    CAS  Google Scholar 

  104. Varshosaz, J.; Taymouri, S.; Hamishehkar, H.; Vatankhah, R.; Yaghubi, S. Development of dry powder inhaler containing tadalafil-loaded PLGA nanoparticles. Res. Pharm. Sci. 2017, 12, 222–232.

    Google Scholar 

  105. Giménez, V. M.; Sperandeo, N.; Faudone, S.; Noriega, S.; Manucha, W.; Kassuha, D. Preparation and characterization of bosentan monohydrate/ε-polycaprolactone nanoparticles obtained by electrospraying. Biotechnol. Prog. 2019, 35, e2748.

    Google Scholar 

  106. Hanna, L. A.; Basalious, E. B.; ELGazayerly, O. N. Respirable controlled release polymeric colloid (RCRPC) of bosentan for the management of pulmonary hypertension: In vitro aerosolization, histological examination and in vivo pulmonary absorption. Drug Deliv. 2017, 24, 188–198.

    CAS  Google Scholar 

  107. Ichimura, K.; Matoba, T.; Koga, J. I.; Nakano, K.; Funamoto, D.; Tsutsui, H.; Egashira, K. Nanoparticle-mediated targeting of pitavastatin to small pulmonary arteries and leukocytes by intravenous administration attenuates the progression of monocrotaline-induced established pulmonary arterial hypertension in rats. Int. Heart J. 2018, 59, 1432–1444.

    CAS  Google Scholar 

  108. Akagi, S.; Nakamura, K.; Miura, D.; Saito, Y.; Matsubara, H.; Ogawa, A.; Matoba, T.; Egashira, K.; Ito, H. Delivery of imatinib-incorporated nanoparticles into lungs suppresses the development of monocrotaline-induced pulmonary arterial hypertension. Int. Heart J. 2015, 56, 354–359.

    CAS  Google Scholar 

  109. Rashid, J.; Alobaida, A.; Al-Hilal, T. A.; Hammouda, S.; McMurtry, I. F.; Nozik-Grayck, E.; Stenmark, K. R.; Ahsan, F. Repurposing rosiglitazone, a PPAR-γ agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH. J. Control. Release 2018, 280, 113–123.

    CAS  Google Scholar 

  110. Ni, R.; Muenster, U.; Zhao, J.; Zhang, L.; Becker-Pelster, E. M.; Rosenbruch, M.; Mao, S. R. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: In vitro and in vivo characterization. J. Control. Release 2017, 249, 11–22.

    CAS  Google Scholar 

  111. Lv, B. Y.; Chen, S.; Tang, C. S.; Jin, H. F.; Du, J. B.; Huang, Y. Q. Hydrogen sulfide and vascular regulation—An update. J. Adv. Res. 2021, 27, 85–97.

    CAS  Google Scholar 

  112. Roubenne, L.; Marthan, R.; Le Grand, B.; Guibert, C. Hydrogen sulfide metabolism and pulmonary hypertension. Cells 2021, 10, 1477.

    CAS  Google Scholar 

  113. Zhang, H.; Lin, Y. J.; Ma, Y. W.; Zhang, J. F.; Wang, C. Q.; Zhang, H. L. Protective effect of hydrogen sulfide on monocrotaline-induced pulmonary arterial hypertension via inhibition of the endothelial mesenchymal transition. Int. J. Mol. Med. 2019, 44, 2091–2102.

    CAS  Google Scholar 

  114. Zhang, H. L.; Guo, C. F.; Zhang, A. L.; Fan, Y. Q.; Gu, T.; Wu, D. J.; Sparatore, A.; Wang, C. Q. Effect of S-aspirin, a novel hydrogen-sulfide-releasing aspirin (ACS14), on atherosclerosis in apoE-deficient mice. Eur. J. Pharmacol. 2012, 697, 106–116.

    CAS  Google Scholar 

  115. Zhang, H.; Hao, L. Z.; Pan, J. A.; Gao, Q.; Zhang, J. F.; Kankala, R. K.; Wang, S. B.; Chen, A. Z.; Zhang, H. L. Microfluidic fabrication of inhalable large porous microspheres loaded with H2S-releasing aspirin derivative for pulmonary arterial hypertension therapy. J. Control. Release 2021, 329, 286–298.

    CAS  Google Scholar 

  116. Large, D. E.; Abdelmessih, R. G.; Fink, E. A.; Auguste, D. T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851.

    CAS  Google Scholar 

  117. Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M. S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122.

    Google Scholar 

  118. Bayat, F.; Hosseinpour-Moghadam, R.; Mehryab, F.; Fatahi, Y.; Shakeri, N.; Dinarvand, R.; Ten Hagen, T. L. M.; Haeri, A. Potential application of liposomal nanodevices for non-cancer diseases: An update on design, characterization and biopharmaceutical evaluation. Adv. Colloid Interface Sci. 2020, 277, 102121.

    CAS  Google Scholar 

  119. Moosavian, S. A.; Bianconi, V.; Pirro, M.; Sahebkar, A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin. Cancer Biol. 2021, 69, 337–348.

    CAS  Google Scholar 

  120. Lai, W. F.; Wong, W. T.; Rogach, A. L. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 43341–43351.

    CAS  Google Scholar 

  121. Münter, R.; Bak, M.; Christensen, E.; Kempen, P. J.; Larsen, J. B.; Kristensen, K.; Parhamifar, L.; Andresen, T. L. Mechanisms of selective monocyte targeting by liposomes functionalized with a cationic, arginine-rich lipopeptide. Acta Biomater. 2022, 144, 96–108.

    Google Scholar 

  122. Zhu, Y.; Liang, J. M.; Gao, C. F.; Wang, A. N.; Xia, J. X.; Hong, C.; Zhong, Z. R.; Zuo, Z.; Kim, J.; Ren, H. et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Control. Release 2021, 330, 641–657.

    CAS  Google Scholar 

  123. Jain, P. P.; Leber, R.; Nagaraj, C.; Leitinger, G.; Lehofer, B.; Olschewski, H.; Olschewski, A.; Prassl, R.; Marsh, L. M. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries. Int. J. Nanomed. 2014, 9, 3249–3261.

    CAS  Google Scholar 

  124. Liu, A. J.; Li, B.; Yang, M.; Shi, Y. Y.; Su, J. W. Targeted treprostinil delivery inhibits pulmonary arterial remodeling. Eur. J. Pharmacol. 2022, 923, 174700.

    CAS  Google Scholar 

  125. Li, B. B.; He, W.; Ye, L.; Zhu, Y. L.; Tian, Y. L.; Chen, L.; Yang, J.; Miao, M. X.; Shi, Y. J.; Azevedo, H. S. et al. Targeted delivery of sildenafil for inhibiting pulmonary vascular remodeling. Hypertension 2019, 73, 703–711.

    CAS  Google Scholar 

  126. Nahar, K.; Rashid, J.; Absar, S.; Al-Saikhan, F. I.; Ahsan, F. Liposomal aerosols of nitric oxide (NO) donor as a long-acting substitute for the ultra-short-acting inhaled NO in the treatment of PAH. Pharm. Res. 2016, 33, 1696–1710.

    CAS  Google Scholar 

  127. Elnaggar, M. A.; Subbiah, R.; Han, D. K.; Joung, Y. K. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin. Drug Deliv. 2017, 12, 1341–1353.

    Google Scholar 

  128. Gupta, N.; Al-Saikhan, F. I.; Patel, B.; Rashid, J.; Ahsan, F. Fasudil and SOD packaged in peptide-studded-liposomes: Properties, pharmacokinetics and ex-vivo targeting to isolated perfused rat lungs. Int. J. Pharm. 2015, 488, 33–43.

    CAS  Google Scholar 

  129. Rashid, J.; Nahar, K.; Raut, S.; Keshavarz, A.; Ahsan, F. Fasudil and DETA NONOate, loaded in a peptide-modified liposomal carrier, slow PAH progression upon pulmonary delivery. Mol. Pharm. 2018, 15, 1755–1765.

    CAS  Google Scholar 

  130. Gupta, N.; Rashid, J.; Nozik-Grayck, E.; McMurtry, I. F.; Stenmark, K. R.; Ahsan, F. Cocktail of superoxide dismutase and fasudil encapsulated in targeted liposomes slows PAH progression at a reduced dosing frequency. Mol. Pharm. 2017, 14, 830–841.

    CAS  Google Scholar 

  131. Nahar, K.; Absar, S.; Gupta, N.; Kotamraju, V. R.; McMurtry, I. F.; Oka, M.; Komatsu, M.; Nozik-Grayck, E.; Ahsan, F. Peptide-coated liposomal fasudil enhances site specific vasodilation in pulmonary arterial hypertension. Mol. Pharm. 2014, 11, 4374–4384.

    CAS  Google Scholar 

  132. Gupta, N.; Ibrahim, H. M.; Ahsan, F. Peptide-micelle hybrids containing fasudil for targeted delivery to the pulmonary arteries and arterioles to treat pulmonary arterial hypertension. J. Pharm. Sci. 2014, 103, 3743–3753.

    CAS  Google Scholar 

  133. Gupta, V.; Gupta, N.; Shaik, I. H.; Mehvar, R.; McMurtry, I. F.; Oka, M.; Nozik-Grayck, E.; Komatsu, M.; Ahsan, F. Liposomal fasudil, a Rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J. Control. Release 2013, 167, 189–199.

    CAS  Google Scholar 

  134. Xu, H. F.; Ji, H. Y.; Li, Z. R.; Qiao, W. M.; Wang, C. H.; Tang, J. L. In vivo pharmacokinetics and in vitro release of imatinib mesylate-loaded liposomes for pulmonary delivery. Int. J. Nanomed. 2021, 16, 1221–1229.

    Google Scholar 

  135. Lee, Y.; Pai, S. B.; Bellamkonda, R. V.; Thompson, D. H.; Singh, J. Cerivastatin nanoliposome as a potential disease modifying approach for the treatment of pulmonary arterial hypertension. J. Pharmacol. Exp. Ther. 2018, 366, 66–74.

    CAS  Google Scholar 

  136. Yin, Y. J.; Wu, X. D.; Yang, Z. Y.; Zhao, J.; Wang, X. S.; Zhang, Q. Y.; Yuan, M. Q.; Xie, L.; Liu, H. M.; He, Q. The potential efficacy of R8-modified paclitaxel-loaded liposomes on pulmonary arterial hypertension. Pharm. Res. 2013, 30, 2050–2062.

    CAS  Google Scholar 

  137. Dhoble, S.; Patravale, V. SIRT 1 activator loaded inhaled antiangiogenic liposomal formulation development for pulmonary hypertension. AAPS PharmSciTech 2022, 23, 158.

    CAS  Google Scholar 

  138. Li, Z. R.; Qiao, W. M.; Wang, C. H.; Wang, H. Q.; Ma, M. C.; Han, X. Y.; Tang, J. L. DPPC-coated lipid nanoparticles as an inhalable carrier for accumulation of resveratrol in the pulmonary vasculature, a new strategy for pulmonary arterial hypertension treatment. Drug Deliv. 2020, 27, 736–744.

    CAS  Google Scholar 

  139. Huang, Y. Q.; Chen, T.; Wang, W. M.; Zhuang, B.; Yuan, T. Y.; Liu, Y.; Du, L. N.; Wei, X. Y.; Peng, H.; Jin, Y. G. Preparation of liposomal sildenafil and its pulmonary delivery for the prevention of high altitude pulmonary edema. Acta Pharm. Sin. 2021, 56, 2658–2668.

    Google Scholar 

  140. Urakami, T.; Järvinen, T. A. H.; Toba, M.; Sawada, J.; Ambalavanan, N.; Mann, D.; McMurtry, I.; Oka, M.; Ruoslahti, E.; Komatsu, M. Peptide-directed highly selective targeting of pulmonary arterial hypertension. Am. J. Pathol. 2011, 178, 2489–2495.

    CAS  Google Scholar 

  141. Nahar, K.; Absar, S.; Patel, B.; Ahsan, F. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int. J. Pharm. 2014, 464, 185–195.

    CAS  Google Scholar 

  142. Marulanda, K.; Mercel, A.; Gillis, D. C.; Sun, K.; Gambarian, M.; Roark, J.; Weiss, J.; Tsihlis, N. D.; Karver, M. R.; Centeno, S. R. et al. Intravenous delivery of lung-targeted nanofibers for pulmonary hypertension in mice. Adv. Healthc. Mater. 2021, 10, 2100302.

    CAS  Google Scholar 

  143. Lautner, G.; Lautner-Csorba, O.; Stringer, B.; Meyerhoff, M. E.; Schwendeman, S. P. Feedback-controlled photolytic gas phase nitric oxide delivery from S-nitrosothiol-doped silicone rubber films. J. Control. Release 2020, 318, 264–269.

    CAS  Google Scholar 

  144. Li, Q.; Youn, J. Y.; Siu, K. L.; Murugesan, P.; Zhang, Y. X.; Cai, H. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol. 2019, 24, 101185.

    CAS  Google Scholar 

  145. Zhu, M. L.; Gao, Z. T.; Lu, J. X.; Wang, Y.; Wang, G.; Zhu, T. T.; Li, P.; Liu, C.; Wang, S. X.; Yang, L. Amorphous nano-selenium quantum dots prevent pulmonary arterial hypertension through recoupling endothelial nitric oxide synthase. Aging 2021, 13, 3368–3385.

    CAS  Google Scholar 

  146. Kolli, M. B.; Manne, N. D. P. K.; Para, R.; Nalabotu, S. K.; Nandyala, G.; Shokuhfar, T.; He, K.; Hamlekhan, A.; Ma, J. Y.; Wehner, P. S. et al. Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension. Biomaterials 2014, 35, 9951–9962.

    CAS  Google Scholar 

  147. Boucherat, O.; Agrawal, V.; Lawrie, A.; Bonnet, S. The latest in animal models of pulmonary hypertension and right ventricular failure. Circ. Res. 2022, 130, 1466–1486.

    Google Scholar 

  148. Metselaar, J. M.; Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 2020, 10, 721–725.

    Google Scholar 

  149. Liu, X. S.; Tang, I.; Wainberg, Z. A.; Meng, H. Safety considerations of cancer nanomedicine—A key step toward translation. Small 2020, 16, 2000673.

    CAS  Google Scholar 

  150. Germain, M.; Caputo, F.; Metcalfe, S.; Tosi, G.; Spring, K.; Åslund, A. K. O.; Pottier, A.; Schiffelers, R.; Ceccaldi, A.; Schmid, R. Delivering the power of nanomedicine to patients today. J. Control. Release 2020, 326, 164–171.

    CAS  Google Scholar 

  151. Huang, J.; Huang, Q.; Liu, M.; Chen, Q. H.; Ai, K. L. Emerging bismuth chalcogenides based nanodrugs for cancer radiotherapy. Front. Pharmacol. 2022, 13, 844037.

    CAS  Google Scholar 

  152. Wang, J. L.; Sui, L.; Huang, J.; Miao, L.; Nie, Y. B.; Wang, K. S.; Yang, Z. C.; Huang, Q.; Gong, X.; Nan, Y. Y. et al. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater. 2021, 6, 4209–4242.

    CAS  Google Scholar 

  153. Yang, Y. Q.; Zhao, T. J.; Chen, Q. H.; Li, Y. M.; Xiao, Z. X.; Xiang, Y. T.; Wang, B. Y.; Qiu, Y. G.; Tu, S. Q.; Jiang, Y. T. et al. Nanomedicine strategies for heating “cold” ovarian cancer (OC): Next evolution in immunotherapy of OC. Adv. Sci. 2022, 9, 2202797.

    CAS  Google Scholar 

  154. Huang, Q.; Yang, Y. Q.; Zhao, T. J.; Chen, Q. H.; Liu, M.; Ji, S. T.; Zhu, Y.; Yang, Y. R.; Zhang, J. P.; Zhao, H. X. et al. Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment. Bioact. Mater. 2023, 21, 381–393.

    CAS  Google Scholar 

  155. Chen, Q. H.; Nan, Y. Y.; Yang, Y. Q.; Xiao, Z. X.; Liu, M.; Huang, J.; Xiang, Y. T.; Long, X. Y.; Zhao, T. J.; Wang, X. Y. et al. Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioact. Mater. 2023, 22, 141–167.

    CAS  Google Scholar 

  156. Liu, M.; Xiang, Y. T.; Yang, Y. Q.; Long, X. Y.; Xiao, Z. X.; Nan, Y. Y.; Jiang, Y. T.; Qiu, Y. G.; Huang, Q.; Ai, K. L. State-of-the-art advancements in liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens. Bioelectron. 2022, 218, 114758.

    CAS  Google Scholar 

  157. Zhu, Y.; Zhao, T. J.; Liu, M.; Wang, S. Y.; Liu, S. L.; Yang, Y. R.; Yang, Y. Q.; Nan, Y. Y.; Huang, Q.; Ai, K. L. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today 2022, 42, 101358.

    CAS  Google Scholar 

  158. Wan, X. Y.; Zhao, Y. C.; Li, Z.; Li, L. L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029.

    Google Scholar 

  159. Dai, Y. J.; Ding, Y. M.; Li, L. L. Nanozymes for regulation of reactive oxygen species and disease therapy. Chin. Chem. Lett. 2021, 32, 2715–2728.

    CAS  Google Scholar 

  160. Liu, Z. R.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: Design and applications. Adv. Mater. 2021, 33, 2007429.

    CAS  Google Scholar 

  161. Wang, X. Y.; Wang, S. B.; Gao, J.; Yao, S. C.; Xu, T.; Zhao, Y. C.; Zhang, Z. Y.; Huang, T.; Yan, S.; Li, L. L. Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection. Nano Res., in press, https://doi.org/10.1007/s12274-022-4457-5.

  162. Zhao, Y. C.; Wang, S. B.; Ding, Y. M.; Zhang, Z. Y.; Huang, T.; Zhang, Y. L.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Piezotronic effect-augmented Cu2−x−O−BaTiO3 sonosensitizers for multifunctional cancer dynamic therapy. ACS Nano 2022, 16, 9304–9316.

    CAS  Google Scholar 

  163. Yao, S. C.; Wang, Z.; Li, L. L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Mater. Med. 2022, 3, 230–242.

    Google Scholar 

  164. Yao, S. C.; Liu, Z. R.; Li, L. L. Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro. Lett. 2021, 13, 176.

    CAS  Google Scholar 

  165. Ang, M. J. Y.; Chan, S. Y.; Goh, Y. Y.; Luo, Z. C.; Lau, J. W.; Liu, X. G. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv. Drug Deliv. Rev. 2021, 178, 113907.

    CAS  Google Scholar 

  166. Lepeltier, E.; Rijo, P.; Rizzolio, F.; Popovtzer, R.; Petrikaite, V.; Assaraf, Y. G.; Passirani, C. Nanomedicine to target multidrug resistant tumors. Drug Resist. Updat. 2020, 52, 100704.

    Google Scholar 

  167. Su, Z. W.; Dong, S. W.; Zhao, S. C.; Liu, K. S.; Tan, Y.; Jiang, X. Y.; Assaraf, Y. G.; Qin, B.; Chen, Z. S.; Zou, C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist. Updat. 2021, 58, 100777.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82173817, 81872872, and 21974134), the Hunan Science Fund for Distinguished Young Scholar (No. 2021JJ10067, China), Innovation-Driven Project of Central South University (No. 202045005, China), and Central South University Research Programme of Advanced Interdisciplinary Studies (No. 2023QYJC017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kelong Ai or Changping Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, Q., Zhao, T. et al. Nanomedicine-based treatment: An emerging therapeutical strategy for pulmonary hypertension. Nano Res. 16, 7007–7029 (2023). https://doi.org/10.1007/s12274-022-5310-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5310-6

Keywords

Navigation