Skip to main content
Log in

Recent advancements and manipulation strategies of colloidal Cs2BIBIIIX6 lead-free halide double perovskite nanocrystals

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Double-metallic lead-free halide perovskites, Cs2BIBIIIX6, sharing three-dimensional crystal structure, have been under the spotlight as the promising alternatives for the toxic and instable lead-based counterparts. Interest in Cs2BIBIIIX6 motivates intense research into their colloidal nanocrystals (NCs). Recently, Cs2BIBIIIX6 NCs have made great progress in the optical performance via alloying or doping, but there are still great challenges for optoelectronic applications. In this review, the latest advances of Cs2BIBIIIX6 NCs in synthesis approaches, bandgap engineering, photoluminescence (PL) optimization, and applications are summarized. The focus is put upon the composition—property relationships of Cs2BIBIIIX6 NCs, which is approached by discussing the influences of composition variation on the electronic states, carrier dynamics, and optical properties. The challenges and the corresponding improving strategies in the development of high-effective and stable Cs2BIBIIIX6 NCs for device applications are also highlighted. It is believed that this review can deepen the understanding on this burgeoning material system and shed light on their future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

    CAS  Google Scholar 

  2. Correa-Baena, J. P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T. J.; Grätzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727.

    CAS  Google Scholar 

  3. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    CAS  Google Scholar 

  4. Walsh, A.; Scanlon, D. O.; Chen, S. Y.; Gong, X. G.; Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem., Int. Ed. 2015, 54, 1791–1794.

    CAS  Google Scholar 

  5. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    CAS  Google Scholar 

  6. Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

    CAS  Google Scholar 

  7. Li, Z.; Li, B.; Wu, X.; Sheppard, S. A.; Zhang, S. F.; Gao, D. P.; Long, N. J.; Zhu, Z. L. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376, 416–420.

    CAS  Google Scholar 

  8. Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

    CAS  Google Scholar 

  9. Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

    CAS  Google Scholar 

  10. Liu, P. Z.; Chen, W.; Wang, W. G.; Xu, B.; Wu, D.; Hao, J. J.; Cao, W. Y.; Fang, F.; Li, Y.; Zeng, Y. Y. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 2017, 29, 5168–5173.

    CAS  Google Scholar 

  11. Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; Mcgehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.

    Google Scholar 

  12. Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240.

    CAS  Google Scholar 

  13. Park, B. W.; Seok, S. I. Intrinsic instability of inorganic-organic hybrid halide perovskite materials. Adv. Mater. 2019, 31, 1805337.

    Google Scholar 

  14. Ning, W. H.; Gao, F. Structural and functional diversity in lead-free halide perovskite materials. Adv. Mater. 2019, 31, 1900326.

    Google Scholar 

  15. Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

    CAS  Google Scholar 

  16. Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658.

    CAS  Google Scholar 

  17. Chen, M.; Ju, M. G.; Garces, H. F.; Carl, A. D.; Ono, L. K.; Hawash, Z.; Zhang, Y.; Shen, T. Y.; Qi, Y. B.; Grimm, R. L. et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 2019, 10, 16.

    CAS  Google Scholar 

  18. Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587.

    CAS  Google Scholar 

  19. Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (a: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

    CAS  Google Scholar 

  20. Jiang, F. Y.; Yang, D. W.; Jiang, Y. Y.; Liu, T. F.; Zhao, X. G.; Ming, Y.; Luo, B. W.; Qin, F.; Fan, J. C.; Han, H. W. et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 1019–1027.

    CAS  Google Scholar 

  21. Saparov, B.; Sun, J. P.; Meng, W. W.; Xiao, Z. W.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem. Mater. 2016, 28, 2315–2322.

    CAS  Google Scholar 

  22. Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 2018, 30, 1804547.

    Google Scholar 

  23. Zhao, X. G.; Yang, D. W.; Ren, J. C.; Sun, Y. H.; Xiao, Z. W.; Zhang, L. J. Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662–1673.

    CAS  Google Scholar 

  24. Yin, H.; Xian, Y. M.; Zhang, Y. L.; Li, W. Z.; Fan, J. D. Structurally stabilizing and environment friendly triggers: Double-metallic lead-free perovskites. Sol. RRL 2019, 3, 1900148.

    Google Scholar 

  25. Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.

    CAS  Google Scholar 

  26. McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354.

    CAS  Google Scholar 

  27. Deng, Z. Y.; Wei, F. X.; Sun, S. J.; Kieslich, G.; Cheetham, A. K.; Bristowe, P. D. Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 2016, 4, 12025–12029.

    CAS  Google Scholar 

  28. Zhou, J.; Xia, Z. G.; Molokeev, M. S.; Zhang, X. W.; Peng, D. S.; Liu, Q. L. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J. Mater. Chem. A 2017, 5, 15031–15037.

    CAS  Google Scholar 

  29. Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 2017, 8, 772–778.

    CAS  Google Scholar 

  30. Schade, L.; Wright, A. D.; Johnson, R. D.; Dollmann, M.; Wenger, B.; Nayak, P. K.; Prabhakaran, D.; Herz, L. M.; Nicholas, R.; Snaith, H. J. et al. Structural and optical properties of Cs2AgBiBr6 double perovskite. ACS Energy Lett. 2018, 4, 299–305.

    Google Scholar 

  31. Majher, J. D.; Gray, M. B.; Strom, T. A.; Woodward, P. M. Cs2NaBiCl6: Mn2+-a new orange-red halide double perovskite phosphor. Chem. Mater. 2019, 31, 1738–1744.

    CAS  Google Scholar 

  32. Zhou, J.; Rong, X. M.; Molokeev, M. S.; Zhang, X. W.; Xia, Z. G. Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach. J. Mater. Chem. A 2018, 6, 2346–2352.

    CAS  Google Scholar 

  33. Wu, C. C.; Zhang, Q. H.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z. R.; Ting, H.; Sun, W. H.; Zhong, X. R.; Wei, S. Y. et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 2018, 5, 1700759.

    Google Scholar 

  34. Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545.

    CAS  Google Scholar 

  35. Yang, B.; Pan, W. C.; Wu, H. D.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Yin, L. X.; Du, X. Y.; Miao, X. S.; Yang, X. Q. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.

    Google Scholar 

  36. Zhang, Z. Z.; Liang, Y. Q.; Huang, H. L.; Liu, X. Y.; Li, Q.; Chen, L. X.; Xu, D. S. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew. Chem., Int. Ed. 2019, 58, 7263–7267.

    CAS  Google Scholar 

  37. Bekenstein, Y.; Dahl, J. C.; Huang, J. M.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P. D.; Alivisatos, A. P. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 2018, 18, 3502–3508.

    CAS  Google Scholar 

  38. Creutz, S. E.; Crites, E. N.; De Siena, M. C.; Gamelin, D. R. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett. 2018, 18, 1118–1123.

    CAS  Google Scholar 

  39. Yang, B.; Chen, J. S.; Yang, S. Q.; Hong, F.; Sun, L.; Han, P. G.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 5359–5363.

    Google Scholar 

  40. Hu, Q. S.; Niu, G. D.; Zheng, Z.; Li, S. R.; Zhang, Y. N.; Song, H. S.; Zhai, T. Y.; Tang, J. Tunable color temperatures and efficient white emission from Cs2Ag1-xNaxIn1-yBiyCl6 double perovskite nanocrystals. Small 2019, 15, 1903496.

    CAS  Google Scholar 

  41. Yang, B.; Mao, X.; Hong, F.; Meng, W. W.; Tang, Y. X.; Xia, X. S.; Yang, S. Q.; Deng, W. Q.; Han, K. L. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission. J. Am. Chem. Soc. 2018, 140, 17001–17006.

    CAS  Google Scholar 

  42. Mahor, Y.; Mir, W. J.; Nag, A. Synthesis and near-infrared emission of Yb-doped Cs2AgInCl6 double perovskite microcrystals and nanocrystals. J. Phys. Chem. C 2019, 123, 15787–15793.

    CAS  Google Scholar 

  43. Infante, I.; Manna, L. Are there good alternatives to lead halide perovskite nanocrystals? Nano Lett. 2021, 21, 6–9.

    CAS  Google Scholar 

  44. Manna, D.; Kangsabanik, J.; Das, T. K.; Das, D.; Alam, A.; Yella, A. Lattice dynamics and electron-phonon coupling in lead-free Cs2AgIn1-xBixCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2020, 11, 2113–2120.

    CAS  Google Scholar 

  45. Dahl, J. C.; Osowiecki, W. T.; Cai, Y.; Swabeck, J. K.; Bekenstein, Y.; Asta, M.; Chan, E. M.; Alivisatos, A. P. Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals. Chem. Mater. 2019, 31, 3134–3143.

    CAS  Google Scholar 

  46. Xu, J.; Liu, J. B.; Liu, B. X.; Huang, B. Intrinsic defect physics in indium-based lead-free halide double perovskites. J. Phys. Chem. Lett. 2017, 8, 4391–4396.

    CAS  Google Scholar 

  47. Ravi, V. K.; Singhal, N.; Nag, A. Initiation and future prospects of colloidal metal halide double-perovskite nanocrystals: Cs2AgBiX6 (X = Cl, Br, I). J. Mater. Chem. A 2018, 6, 21666–21675.

    CAS  Google Scholar 

  48. Khalfin, S.; Bekenstein, Y. Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 2019, 11, 8665–8679.

    CAS  Google Scholar 

  49. Tang, H. D.; Xu, Y. Q.; Hu, X. B.; Hu, Q.; Chen, T.; Jiang, W. H.; Wang, L. J.; Jiang, W. Lead-free halide double perovskite nanocrystals for light-emitting applications: Strategies for boosting efficiency and stability. Adv. Sci. 2021, 8, 2004118.

    CAS  Google Scholar 

  50. Han, P. G.; Han, K. L. Recent advances in all-inorganic lead-free three-dimensional halide double perovskite nanocrystals. Energy Fuels 2021, 35, 18871–18887.

    CAS  Google Scholar 

  51. Cai, Y.; Xie, W.; Teng, Y. T.; Harikesh, P. C.; Ghosh, B.; Huck, P.; Persson, K. A.; Mathews, N.; Mhaisalkar, S. G.; Sherburne, M. et al. High-throughput computational study of halide double perovskite inorganic compounds. Chem. Mater. 2019, 31, 5392–5401.

    CAS  Google Scholar 

  52. Zhang, T.; Cai, Z. H.; Chen, S. Y. Chemical trends in the thermodynamic stability and band gaps of 980 halide double perovskites: A high-throughput first-principles study. ACS Appl. Mater. Interfaces 2020, 12, 20680–20690.

    CAS  Google Scholar 

  53. Li, C.; Lu, X. G.; Ding, W. Z.; Feng, L. M.; Gao, Y. H.; Guo, Z. M. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B 2008, 64, 702–707.

    CAS  Google Scholar 

  54. Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

    Google Scholar 

  55. Usman, M.; Yan, Q. F. Recent advancements in crystalline Pb-free halide double perovskites. Crystals 2020, 10, 62.

    CAS  Google Scholar 

  56. Igbari, F.; Wang, Z. K.; Liao, L. S. Progress of lead-free halide double perovskites. Adv. Energy Mater. 2019, 9, 1803150.

    Google Scholar 

  57. Chen, Q.; De Marco, N.; Yang, Y.; Song, T. B.; Chen, C. C.; Zhao, H. X.; Hong, Z. R.; Zhou, H. P.; Yang, Y. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396.

    CAS  Google Scholar 

  58. Wu, Y.; Li, X. M.; Zeng, H. B. Lead-free halide double perovskites: Structure, luminescence, and applications. Small Struct. 2020, 2, 2000071.

    Google Scholar 

  59. Zhao, X. G.; Yang, D. W.; Sun, Y. H.; Li, T. S.; Zhang, L. J.; Yu, L. P.; Zunger, A. Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 2017, 139, 6718–6725.

    CAS  Google Scholar 

  60. Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638.

    CAS  Google Scholar 

  61. Xiao, Z. W.; Du, K. Z.; Meng, W. W.; Mitzi, D. B.; Yan, Y. F. Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites. Angew. Chem., Int. Ed. 2017, 56, 12107–12111.

    CAS  Google Scholar 

  62. Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z. Y.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S. et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995.

    CAS  Google Scholar 

  63. Wang, C.; Liu, Y.; Guo, Y. R.; Ma, L. L.; Liu, Y. L.; Zhou, C. Y.; Yu, X.; Zhao, G. J. Lead-free sodium bismuth halide Cs2NaBiX6 double perovskite nanocrystals with highly efficient photoluminesence. Chem. Eng. J. 2020, 397, 125367.

    CAS  Google Scholar 

  64. Liu, Y.; Jing, Y. Y.; Zhao, J.; Liu, Q. L.; Xia, Z. G. Design optimization of lead-free perovskite Cs2AgInCl6: Bi nanocrystals with 11. 4% photoluminescence quantum yield. Chem. Mater. 2019, 31, 3333–3339.

    CAS  Google Scholar 

  65. Lv, K. X.; Qi, S. P.; Liu, G. N.; Lou, Y. B.; Chen, J. X.; Zhao, Y. X. Lead-free silver-antimony halide double perovskite quantum dots with superior blue photoluminescence. Chem. Commun. 2019, 55, 14741–14744.

    CAS  Google Scholar 

  66. Hu, Y. Q.; Fan, L. J.; Hui, H. Y.; Wen, H. Q.; Yang, D. S.; Feng, G. D. Monodisperse bismuth-halide double perovskite nanocrystals confined in mesoporous silica templates. Inorg. Chem. 2019, 58, 8500–8505.

    CAS  Google Scholar 

  67. Kumar, S.; Hassan, I.; Regue, M.; Gonzalez-Carrero, S.; Rattner, E.; Isaacs, M. A.; Eslava, S. Mechanochemically synthesized Pb-free halide perovskite-based Cs2AgBiBr6-Cu-RGO nanocomposite for photocatalytic CO2 reduction. J. Mater. Chem. A 2021, 9, 12179–12187.

    CAS  Google Scholar 

  68. Han, P. G.; Luo, C.; Zhou, W.; Hou, J.; Li, C.; Zheng, D. Y.; Han, K. L. Band-gap engineering of lead-free iron-based halide double-perovskite single crystals and nanocrystals by an alloying or doping strategy. J. Phys. Chem. C 2021, 125, 11743–11749.

    CAS  Google Scholar 

  69. Meng, W. W.; Wang, X. M.; Xiao, Z. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 2017, 8, 2999–3007.

    CAS  Google Scholar 

  70. Zu, F. S.; Shin, D.; Koch, N. Electronic properties of metal halide perovskites and their interfaces: The basics. Mater. Horiz. 2022, 9, 17–24.

    CAS  Google Scholar 

  71. Xiao, Z. W.; Du, K. Z.; Meng, W. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: A combined density functional theory and experimental study. J. Am. Chem. Soc. 2017, 139, 6054–6057.

    CAS  Google Scholar 

  72. Aslam, F.; Ullah, H.; Hassan, M. Theoretical investigation of Cs2InBiX6 (X = Cl, Br, I) double perovskite halides using first-principle calculations. Mater. Sci. Eng. B 2021, 274, 115456.

    CAS  Google Scholar 

  73. Slavney, A. H.; Leppert, L.; Saldivar Valdes, A.; Bartesaghi, D.; Savenije, T. J.; Neaton, J. B.; Karunadasa, H. I. Small-band-gap halide double perovskites. Angew. Chem., Int. Ed. 2018, 57, 12765–12770.

    CAS  Google Scholar 

  74. Yuan, W. N.; Niu, G. D.; Xian, Y. M.; Wu, H. D.; Wang, H. M.; Yin, H.; Liu, P.; Li, W. Z.; Fan, J. D. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv. Funct. Mater. 2019, 29, 1900234.

    Google Scholar 

  75. Su, J.; Huang, Y. Q.; Chen, H.; Huang, J. Solution growth and performance study of Cs2AgBiBr6 single crystal. Cryst. Res. Technol. 2020, 55, 1900222.

    CAS  Google Scholar 

  76. Luo, J. J.; Li, S. R.; Wu, H. D.; Zhou, Y.; Li, Y.; Liu, J.; Li, J. H.; Li, K. H.; Yi, F.; Niu, G. D. et al. Cs2AgInCl6 double perovskite single crystals: Parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics 2018, 5, 398–405.

    CAS  Google Scholar 

  77. Lamba, R. S.; Basera, P.; Bhattacharya, S.; Sapra, S. Band gap engineering in Cs2(NaxAg1-x)BiCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 5173–5181.

    CAS  Google Scholar 

  78. Zhou, J.; Rong, X. M.; Zhang, P.; Molokeev, M. S.; Wei, P. J.; Liu, Q. L.; Zhang, X. W.; Xia, Z. G. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6. Adv. Opt. Mater. 2019, 7, 1801435.

    Google Scholar 

  79. Slavney, A. H.; Connor, B. A.; Leppert, L.; Karunadasa, H. I. A pencil-and-paper method for elucidating halide double perovskite band structures. Chem. Sci. 2019, 10, 11041–11053.

    CAS  Google Scholar 

  80. Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 2016, 7, 1254–1259.

    CAS  Google Scholar 

  81. Du, K. Z.; Meng, W. W.; Wang, X. M.; Yan, Y. F.; Mitzi, D. B. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew. Chem., Int. Ed. 2017, 56, 8158–8162.

    CAS  Google Scholar 

  82. Lamba, R. S.; Basera, P.; Singh, S.; Bhattacharya, S.; Sapra, S. Lead-free alloyed double-perovskite nanocrystals of Cs2(NaxAg1−x)BiBr6 with tunable band gap. J. Phys. Chem. C 2021, 125, 1954–1962.

    CAS  Google Scholar 

  83. Hutter, E. M.; Gélvez-Rueda, M. C.; Bartesaghi, D.; Grozema, F. C.; Savenije, T. J. Band-like charge transport in Cs2AgBiBr6 and mixed antimony-bismuth Cs2AgBi1−xSbxBr6 halide double perovskites. ACS Omega 2018, 3, 11655–11662.

    CAS  Google Scholar 

  84. Yang, H. X.; Guo, Y. M.; Liu, G. N.; Song, R. W.; Chen, J. X.; Lou, Y. B.; Zhao, Y. X. Near UV luminescent Cs2NaBi0.75Sb0.25Cl6 perovskite colloidal nanocrystals with high stability. Chin. Chem. Lett. 2022, 33, 537–540.

    CAS  Google Scholar 

  85. Tran, T. T.; Panella, J. R.; Chamorro, J. R.; Morey, J. R.; McQueen, T. M. Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 2017, 4, 688–693.

    CAS  Google Scholar 

  86. Manna, D.; Das, T. K.; Yella, A. Tunable and stable white light emission in Bi3+-alloyed Cs2AgInCl6 double perovskite nanocrystals. Chem. Mater. 2019, 31, 10063–10070.

    CAS  Google Scholar 

  87. Chen, N.; Cai, T.; Li, W. H.; Hills-Kimball, K.; Yang, H. J.; Que, M. D.; Nagaoka, Y.; Liu, Z. Y.; Yang, D.; Dong, A. G. et al. Yb-and Mn-doped lead-free double perovskite Cs2AgBiX6 (X = Cl, Br) nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 16855–16863.

    CAS  Google Scholar 

  88. Zhou, W.; Han, P. G.; Zhang, X. R.; Zheng, D. Y.; Yang, S. Q.; Yang, Y.; Luo, C.; Yang, B.; Hong, F.; Wei, D. H. et al. Lead-free small-bandgap Cs2CuSbCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2020, 11, 6463–6467.

    CAS  Google Scholar 

  89. Liao, Q. H.; Chen, J. L.; Zhou, L. Y.; Wei, T. T.; Zhang, L.; Chen, D.; Huang, F. R.; Pang, Q.; Zhang, J. Z. Bandgap engineering of lead-free double perovskite Cs2AgInCl6 nanocrystals via Cu2+-doping. J. Phys. Chem. Lett. 2020, 11, 8392–8398.

    CAS  Google Scholar 

  90. Palummo, M.; Berrios, E.; Varsano, D.; Giorgi, G. Optical properties of lead-free double perovskites by ab initio excited-state methods. ACS Energy Lett. 2020, 5, 457–463.

    CAS  Google Scholar 

  91. Wright, A. D.; Buizza, L. R. V.; Savill, K. J.; Longo, G.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite. J. Phys. Chem. Lett. 2021, 12, 3352–3360.

    CAS  Google Scholar 

  92. Zelewski, S. J.; Urban, J. M.; Surrente, A.; Maude, D. K.; Kuc, A.; Schade, L.; Johnson, R. D.; Dollmann, M.; Nayak, P. K.; Snaith, H. J. et al. Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6. J. Mater. Chem. C 2019, 7, 8350–8356.

    CAS  Google Scholar 

  93. Dey, A.; Richter, A. F.; Debnath, T.; Huang, H.; Polavarapu, L.; Feldmann, J. Transfer of direct to indirect bound excitons by electron intervalley scattering in Cs2AgBiBr6 double perovskite nanocrystals. ACS Nano 2020, 14, 5855–5861.

    CAS  Google Scholar 

  94. Lee, W.; Hong, S.; Kim, S. Colloidal synthesis of lead-free silver-indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions. J. Phys. Chem. C 2019, 123, 2665–2672.

    CAS  Google Scholar 

  95. Yao, M. M.; Wang, L.; Yao, J. S.; Wang, K. H.; Chen, C.; Zhu, B. S.; Yang, J. N.; Wang, J. J.; Xu, W. P.; Zhang, Q. et al. Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion doping. Adv. Opt. Mater. 2020, 8, 1901919.

    CAS  Google Scholar 

  96. Ahmad, R.; Zdražil, L.; Kalytchuk, S.; Naldoni, A.; Rogach, A. L.; Schmuki, P.; Zboril, R.; Kment, Š. Uncovering the role of trioctylphosphine on colloidal and emission stability of Sb-alloyed Cs2NaInCl6 double perovskite nanocrystals. ACS Appl. Mater. Interfaces 2021, 13, 47845–47859.

    CAS  Google Scholar 

  97. Liu, X. Y.; Xu, X.; Li, B.; Yang, L. L.; Li, Q.; Jiang, H.; Xu, D. S. Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process. Small 2020, 16, 2002547.

    CAS  Google Scholar 

  98. Zhu, D. X.; Zito, J.; Pinchetti, V.; Dang, Z. Y.; Olivati, A.; Pasquale, L.; Tang, A. W.; Zaffalon, M. L.; Meinardi, F.; Infante, I. et al. Compositional tuning of carrier dynamics in Cs2Na1−xAgxBiCl6 double-perovskite nanocrystals. ACS Energy Lett. 2020, 5, 1840–1847.

    CAS  Google Scholar 

  99. Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

    CAS  Google Scholar 

  100. Fowler, W. B.; Marrone, M. J.; Kabler, M. N. Theory of self-trapped exciton luminescence in halide crystals. Phys. Rev. B 1973, 8, 5909–5919.

    Google Scholar 

  101. Cong, M. Y.; Yang, B.; Hong, F.; Zheng, T. C.; Sang, Y. B.; Guo, J. W.; Yang, S. Q.; Han, K. L. Self-trapped exciton engineering for white-light emission in colloidal lead-free double perovskite nanocrystals. Sci. Bull. 2020, 65, 1078–1084.

    CAS  Google Scholar 

  102. Locardi, F.; Sartori, E.; Buha, J.; Zito, J.; Prato, M.; Pinchetti, V.; Zaffalon, M. L.; Ferretti, M.; Brovelli, S.; Infante, I. et al. Emissive Bi-doped double perovskite Cs2Ag1−xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976–1982.

    CAS  Google Scholar 

  103. Li, Z. X.; Sun, F. L.; Song, H. N.; Zhou, H. F.; Zhou, Y. F.; Yuan, Z. L.; Guo, P.; Zhou, G. J.; Zhuang, Q. Q.; Yu, X. Q. Warm white-light emitting silica films prepared using lead-free double perovskite QDs. Dalton. Trans. 2021, 50, 9804–9811.

    CAS  Google Scholar 

  104. Zheng, W.; Sun, R. J.; Liu, Y. Q.; Wang, X. J.; Liu, N. Q.; Ji, Y. C.; Wang, L. L.; Liu, H.; Zhang, Y. H. Excitation management of lead-free perovskite nanocrystals through doping. ACS Appl. Mater. Inter. 2021, 13, 6404–6410.

    CAS  Google Scholar 

  105. Zhang, Y. Q.; Zhang, Z. H.; Yu, W. J.; He, Y.; Chen, Z. J.; Xiao, L. X.; Shi, J. J.; Guo, X.; Wang, S. F.; Qu, B. Lead-free double perovskite Cs2AgIn0.9Bi0.1Cl6 quantum dots for white light-emitting diodes. Adv. Sci. 2022, 9, 2102895.

    CAS  Google Scholar 

  106. Han, P. G.; Mao, X.; Yang, S. Q.; Zhang, F.; Yang, B.; Wei, D. H.; Deng, W. Q.; Han, K. L. Lead-free sodium-indium double perovskite nanocrystals through doping silver cations for bright yellow emission. Angew. Chem. Int. Ed. 2019, 58, 17231–17235.

    CAS  Google Scholar 

  107. Ahmad, R.; Zdražil, L.; Kalytchuk, S.; Naldoni, A.; Mohammadi, E.; Schmuki, P.; Zboril, R.; Kment, Š. Robust dual cationic ligand for stable and efficient warm-white light emission in lead-free double perovskite nanocrystals. Appl. Mater. Today 2022, 26, 101288.

    Google Scholar 

  108. Vashishtha, P.; Griffith, B. E.; Fang, Y. N.; Jaiswal, A.; Nutan, G. V.; Bartók, A. P.; White, T.; Hanna, J. V. Elucidation of the structural and optical properties of metal cation (Na+, K+, and Bi3+) incorporated Cs2AgInCl6 double perovskite nanocrystals. J. Mater. Chem. A 2022, 10, 3562–3578.

    CAS  Google Scholar 

  109. Yang, B.; Hong, F.; Chen, J. S.; Tang, Y. X.; Yang, L.; Sang, Y. B.; Xia, X. S.; Guo, J. W.; He, H. X.; Yang, S. Q. et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1−yBiyX6 (X: Br, Cl; 0 ≤ y ≤ 1) double perovskite nanocrystals. Angew. Chem. Int. Ed. 2019, 58, 2278–2283.

    CAS  Google Scholar 

  110. Zhu, D. X.; Zaffalon, M. L.; Zito, J.; Cova, F.; Meinardi, F.; De Trizio, L.; Infante, I.; Brovelli, S.; Manna, L. Sb-doped metal halide nanocrystals: A 0D versus 3D comparison. ACS Energy Lett. 2021, 6, 2283–2292.

    CAS  Google Scholar 

  111. Cong, M. Y.; Zhang, Q. K.; Yang, B.; Chen, J. S.; Xiao, J.; Zheng, D. Y.; Zheng, T. C.; Zhang, R. L.; Qing, G.; Zhang, C. F. et al. Bright triplet self-trapped excitons to dopant energy transfer in halide double-perovskite nanocrystals. Nano Lett. 2021, 21, 8671–8678.

    CAS  Google Scholar 

  112. Lee, W.; Choi, D.; Kim, S. Colloidal synthesis of shape-controlled Cs2NaBiX6 (X = Cl, Br) double perovskite nanocrystals: Discrete optical transition by non-bonding characters and energy transfer to Mn dopants. Chem. Mater. 2020, 32, 6864–6874.

    CAS  Google Scholar 

  113. Su, X. M.; Lian, L. Y.; Zhang, C.; Zhang, J. B.; Liu, S. S.; Zhu, S.; Gao, Y. L.; Luo, W.; Li, H. L.; Zhang, D. L. Enhanced photoluminescence of colloidal lead-free double perovskite Cs2Ag1−xNaxInCl6 nanocrystals doped with manganese. Adv. Opt. Mater. 2021, 9, 2001866.

    CAS  Google Scholar 

  114. Han, P. G.; Zhang, X.; Luo, C.; Zhou, W.; Yang, S. Q.; Zhao, J. Z.; Deng, W. Q.; Han, K. L. Manganese-doped, lead-free double perovskite nanocrystals for bright orange-red emission. ACS Cent. Sci. 2020, 6, 566–572.

    CAS  Google Scholar 

  115. Zhang, A. R.; Liu, Y.; Liu, G. C.; Xia, Z. G. Dopant and compositional modulation triggered broadband and tunable near-infrared emission in Cs2Ag1−xNaxInCl6: Cr3+ nanocrystals. Chem. Mater. 2022, 34, 3006–3012.

    CAS  Google Scholar 

  116. Liu, Y.; Rong, X. M.; Li, M. Z.; Molokeev, M. S.; Zhao, J.; Xia, Z. G. Incorporating rare-earth terbium(III) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence. Angew. Chem., Int. Ed. 2020, 59, 11634–11640.

    CAS  Google Scholar 

  117. Liu, Y.; Molokeev, M. S.; Xia, Z. G. Lattice doping of lanthanide ions in Cs2AgInCl6 nanocrystals enabling tunable photoluminescence. Energy Mater. Adv. 2021, 2021, 1–9.

    Google Scholar 

  118. Zeng, Z. C.; Huang, B. L.; Wang, X.; Lu, L.; Lu, Q. Y.; Sun, M. Z.; Wu, T.; Ma, T. F.; Xu, J.; Xu, Y. S. et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting. Adv. Mater. 2020, 32, 2004506.

    CAS  Google Scholar 

  119. Arfin, H.; Kaur, J.; Sheikh, T.; Chakraborty, S.; Nag, A. Bi3+-Er3+ and Bi3+-Yb3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters. Angew. Chem., Int. Ed. 2020, 59, 11307–11311.

    CAS  Google Scholar 

  120. Wang, S. X.; Qi, J. S.; Kershaw, S. V.; Rogach, A. L. Co-doping of cerium and bismuth into lead-free double perovskite Cs2AgInCl6 nanocrystals results in improved photoluminescence efficiency. ACS Nanosci. Au 2022, 2, 93–101.

    CAS  Google Scholar 

  121. Yin, H.; Kong, Q. K.; Zhang, R. L.; Zheng, D. Y.; Yang, B.; Han, K. L. Lead-free rare-earth double perovskite Cs2AgIn1-γ-xBixLaγCl6 nanocrystals with highly efficient warm-white emission. Sci. China Mater. 2021, 64, 2667–2674.

    CAS  Google Scholar 

  122. Levy, S.; Khalfin, S.; Pavlopoulos, N. G.; Kauffmann, Y.; Atiya, G.; Shaek, S.; Dror, S.; Shechter, R.; Bekenstein, Y. The role silver nanoparticles plays in silver-based double-perovskite nanocrystals. Chem. Mater. 2021, 33, 2370–2377.

    CAS  Google Scholar 

  123. Liu, Z. Y.; Yang, H. J.; Wang, J. Y.; Yuan, Y. C.; Hills-Kimball, K.; Cai, T.; Wang, P.; Tang, A. W.; Chen, O. Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Lett. 2021, 21, 1620–1627.

    CAS  Google Scholar 

  124. Huang, J. M.; Zou, S. W.; Lin, J.; Liu, Z. W.; Qi, M. J. Ultrathin lead-free double perovskite cesium silver bismuth bromide nanosheets. Nano Res. 2021, 14, 4079–4086.

    CAS  Google Scholar 

  125. Wang, X. C.; Bai, T. X.; Yang, B.; Zhang, R. L.; Zheng, D. Y.; Jiang, J. K.; Tao, S. X.; Liu, F.; Han, K. L. Germanium halides serving as ideal precursors: Designing a more effective and less toxic route to high-optoelectronic-quality metal halide perovskite nanocrystals. Nano Lett. 2022, 22, 636–643.

    CAS  Google Scholar 

  126. Li, Q.; Wang, Y. G.; Pan, W. C.; Yang, W. G.; Zou, B.; Tang, J.; Quan, Z. W. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem., Int. Ed. 2017, 56, 15969–15973.

    CAS  Google Scholar 

  127. Zhang, L.; Fang, Y. Y.; Sui, L.; Yan, J. J.; Wang, K.; Yuan, K. J.; Mao, W. L.; Zou, B. Tuning emission and electron-phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure. ACS Energy Lett. 2019, 4, 2975–2982.

    CAS  Google Scholar 

  128. Fu, R. J.; Chen, Y. P.; Yong, X.; Ma, Z. W.; Wang, L. R.; Lv, P. F.; Lu, S. Y.; Xiao, G. J.; Zou, B. Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals. Nanoscale 2019, 11, 17004–17009.

    CAS  Google Scholar 

  129. Han, P. G.; Zhang, X.; Mao, X.; Yang, B.; Yang, S. Q.; Feng, Z. C.; Wei, D. H.; Deng, W. Q.; Pullerits, T.; Han, K. L. Size effect of lead-free halide double perovskite on luminescence property. Sci. China Chem. 2019, 62, 1405–1413.

    CAS  Google Scholar 

  130. Zhang, B. W.; Wang, M. J.; Ghini, M.; Melcherts, A. E. M.; Zito, J.; Goldoni, L.; Infante, I.; Guizzardi, M.; Scotognella, F.; Kriegel, I. et al. Colloidal Bi-doped Cs2Ag1−xNaxInCl6 nanocrystals: Undercoordinated surface Cl ions limit their light emission efficiency. ACS Mater. Lett. 2020, 2, 1442–1449.

    CAS  Google Scholar 

  131. Zhang, Y. N.; Shah, T.; Deepak, F. L.; Korgel, B. A. Surface science and colloidal stability of double-perovskite Cs2AgBiBr6 nanocrystals and their superlattices. Chem. Mater. 2019, 31, 7962–7969.

    CAS  Google Scholar 

  132. Zhou, L.; Xu, Y. F.; Chen, B. X.; Kuang, D. B.; Su, C. Y. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 2018, 14, 1703762.

    Google Scholar 

  133. De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

    CAS  Google Scholar 

  134. Khalfin, S.; Veber, N.; Dror, S.; Shechter, R.; Shaek, S.; Levy, S.; Kauffmann, Y.; Klinger, L.; Rabkin, E.; Bekenstein, Y. Self-healing of crystal voids in double perovskite nanocrystals is related to surface passivation. Adv. Funct. Mater. 2022, 32, 2110421.

    CAS  Google Scholar 

  135. Greul, E.; Petrus, M. L.; Binek, A.; Docampo, P.; Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972–19981.

    CAS  Google Scholar 

  136. Wang, M.; Zeng, P.; Bai, S.; Gu, J. W.; Li, F. M.; Yang, Z.; Liu, M. Z. High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Sol. RRL 2018, 2, 1800217.

    Google Scholar 

  137. Wu, H.; Wang, Y. F.; Liu, A. J.; Wang, J. X.; Kim, B. J.; Liu, Y. W.; Fang, Y.; Zhang, X. L.; Boschloo, G.; Johansson, E. M. J. Methylammonium bromide assisted crystallization for enhanced lead-free double perovskite photovoltaic performance. Adv. Funct. Mater. 2022, 32, 2109402.

    CAS  Google Scholar 

  138. Li, Z. X.; Wang, P.; Ma, C.; Igbari, F.; Kang, Y. K.; Wang, K. L.; Song, W. Y.; Dong, C.; Li, Y. J.; Yao, J. S. et al. Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells. J. Am. Chem. Soc. 2021, 143, 2593–2600.

    CAS  Google Scholar 

  139. Wang, B. N.; Li, N.; Yang, L.; Dall’Agnese, C.; Jena, A. K.; Miyasaka, T.; Wang, X. F. Organic dye/Cs2AgBiBr6 double perovskite heterojunction solar cells. J. Am. Chem. Soc. 2021, 143, 14877–14883.

    CAS  Google Scholar 

  140. Yang, L.; Hou, P. F.; Wang, B. N.; Dall’Agnese, C.; Dall’Agnese, Y.; Chen, G.; Gogotsi, Y.; Meng, X.; Wang, X. F. Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2Tx MXene. Chem. Eng. J. 2022, 446, 136963.

    CAS  Google Scholar 

  141. Zhang, Z.; Sun, Q.; Lu, Y.; Lu, F.; Mu, X.; W, S. H.; Sui, M. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 2022, 13, 3397.

    CAS  Google Scholar 

  142. Ahmad, R.; Nutan, G. V.; Singh, D.; Gupta, G.; Soni, U.; Sapra, S.; Srivastava, R. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Res. 2021, 14, 1126–1134.

    CAS  Google Scholar 

  143. Kumar, A.; Swami, S. K.; Rawat, S. S.; Singh, V. N.; Sinha, O. P.; Srivastava, R. Mixed bismuth-antimony-based double perovskite nanocrystals for solar cell application. Int. J. Energy Res. 2021, 45, 16769–16780.

    CAS  Google Scholar 

  144. Zhang, Z. H.; Zhang, Y. Q.; Guo, X.; Wang, D.; Lao, Y. N.; Qu, B.; Xiao, L. X.; Chen, Z. J. Realizing high-efficiency and stable perovskite solar cells via double-perovskite nanocrystal passivation. ACS Appl. Energy Mater. 2022, 5, 1169–1174.

    CAS  Google Scholar 

  145. Li, L. F.; Shao, H.; Wu, X. F.; Chen, W. D.; Zhu, J. Y.; Dong, B.; Xu, L.; Xu, W.; Hu, J. H.; Zhou, M. et al. Aluminum-doped lead-free double perovskite Cs2AgBiCl6 nanocrystals with ultrahigh stability towards white light emitting diodes. Mater. Res. Bull. 2022, 147, 111645.

    CAS  Google Scholar 

  146. Wu, D. F.; Zhao, X. S.; Huang, Y. Y.; Lai, J. N.; Li, H. Y.; Yang, J. Y.; Tian, C. Q.; He, P.; Huang, Q.; Tang, X. S. Lead-free perovskite Cs2AgBiX6 nanocrystals with a band gap funnel structure for photocatalytic CO2 reduction under visible light. Chem. Mater. 2021, 33, 4971–4976.

    CAS  Google Scholar 

  147. Zhang, Z. P.; Wang, B. Z.; Zhao, H. B.; Liao, J. F.; Zhou, Z. C.; Liu, T. H.; He, B. C.; Wei, Q.; Chen, S.; Chen, H. Y. et al. Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2022, 312, 121358.

    CAS  Google Scholar 

  148. Wu, D. F.; Tao, Y.; Huang, Y. Y.; Huo, B. J.; Zhao, X. S.; Yang, J. Y.; Jiang, X. F.; Huang, Q.; Dong, F.; Tang, X. S. High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals. J. Catal. 2021, 397, 27–35.

    CAS  Google Scholar 

  149. Guo, Y. M.; Lou, Y. B.; Chen, J. X.; Zhao, Y. X. Lead-free Cs2AgSbCl6 double perovskite nanocrystals for effective visible-light photocatalytic C-C coupling reactions. Chem. Sus. Chem. 2022, 15, e202102334.

    CAS  Google Scholar 

  150. Lin, W. K.; Chen, G. X.; Li, E. L.; He, L. H.; Yu, W. J.; Peng, G.; Chen, H. P.; Guo, T. L. Nonvolatile multilevel photomemory based on lead-free double perovskite Cs2AgBiBr6 nanocrystals wrapped within SiO2 as a charge trapping layer. ACS Appl. Mater. Interfaces 2020, 12, 43967–43975.

    CAS  Google Scholar 

  151. Li, X.; Xu, S. H.; Liu, F.; Qu, J. F.; Shao, H. B.; Wang, Z. Y.; Cui, Y. P.; Ban, D. Y.; Wang, C. L. Bi and Sb codoped Cs2Ag0.1Na0. 9InCl6 double perovskite with excitation-wavelength-dependent dual-emission for anti-counterfeiting application. ACS Appl. Mater. Interfaces 2021, 13, 31031–31037.

    CAS  Google Scholar 

  152. Ghosh, S.; Kar, P. Aqueous precursor driven Cs2AgInCl6 double perovskite nanocrystals used as a fluorescent keypad lock. ACS Appl. Electron. Mater. 2022, 4, 2753–2759.

    CAS  Google Scholar 

  153. Zheng, W.; Li, X. L.; Liu, N. Q.; Yan, S.; Wang, X. J.; Zhang, X. Z.; Liu, Y. Q.; Liang, Y. J.; Zhang, Y. H.; Liu, H. Solution-grown chloride perovskite crystal of red afterglow. Angew. Chem., Int. Ed. 2021, 60, 24450–24455.

    CAS  Google Scholar 

  154. Li, X. L.; Zheng, W.; Zhang, Y. H. The making and breaking of perovskite photochromism through doping. Nanoscale 2022, 13, 12574–12580.

    Google Scholar 

  155. Liu, N. Q.; Zheng, W.; Sun, R. J.; Li, X. L.; Xie, X. Y.; Wang, L. L.; Zhang, Y. H. Near-infrared afterglow and related photochromism from solution-grown perovskite crystal. Adv. Funct. Mater. 2021, 32, 2110663.

    Google Scholar 

  156. Wang, X. J.; Zhang, X. Z.; Yan, S.; Liu, H.; Zhang, Y. H. Nearly-unity quantum yield and 12-hour afterglow from a transparent perovskite of Cs2NaScCl6: Tb. Angew. Chem., Int. Ed. 2022, 61, e202210853.

    CAS  Google Scholar 

  157. Connor, B. A.; Leppert, L.; Smith, M. D.; Neaton, J. B.; Karunadasa, H. I. Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6. J. Am. Chem. Soc. 2018, 140, 5235–5240.

    CAS  Google Scholar 

  158. Li, Y. B.; Yang, T.; Xu, Z. Y.; Liu, X. T.; Huang, X. Y.; Han, S. G.; Liu, Y.; Li, M. F.; Luo, J. H.; Sun, Z. H. Dimensional reduction of Cs2AgBiBr6: A 2D hybrid double perovskite with strong polarization sensitivity. Angew. Chem., Int. Ed. 2020, 59, 3429–3433.

    CAS  Google Scholar 

  159. Zhang, W. C.; Hong, M. C.; Luo, J. H. Halide double perovskite ferroelectrics. Angew. Chem., Int. Ed. 2020, 59, 9305–9308.

    CAS  Google Scholar 

  160. Ning, W. H.; Zhao, X. G.; Klarbring, J.; Bai, S.; Ji, F. X.; Wang, F.; Simak, S. I.; Tao, Y. T.; Ren, X. M.; Zhang, L. J. et al. Thermochromic lead-free halide double perovskites. Adv. Funct. Mater. 2019, 29, 1807375.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Fujian Province (No. 2021J01315), and Quanzhou Scientific Research Project (No. 2021GZ4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Liu, Y. Recent advancements and manipulation strategies of colloidal Cs2BIBIIIX6 lead-free halide double perovskite nanocrystals. Nano Res. 16, 5572–5591 (2023). https://doi.org/10.1007/s12274-022-5232-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5232-3

Keywords

Navigation