Skip to main content
Log in

De novo engineering of nanoformulation from traditional Chinese medicine mixtures for psoriasis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanotechnology has been widely applied in the development of traditional Chinese medicine (TCM). Interestingly, we found that nanostructures intrinsically existed in 12 clinically applied TCM mixtures (TCMMs). However, the role of these nanostructures in TCMMs and their potential value in improving the development of TCMMs remain unknown. Taking Qingxuechushi mixture as an example, we demonstrated that nanoparticles could be the most efficient part through the pharmacodynamics study on psoriasis model. By imitating the physical properties and chemical composition of isolated nanoparticles in Qingxuechushi mixture, a novel nanoformulation with definite components and good therapeutic effect was developed, which not only mimicked the prescription composition rules in the original TCMMs but also possessed the advantage of nanotechnology. This novel nanoformulation could notably alleviate the psoriasis-like manifestations and reduce the levels of pro-inflammatory factors in serum in the psoriasis mouse model. This work organically integrates the advantages of TCMMs and nanotechnology, which may provide a new approach and inspiration for the development of TCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X.; Zhao, Y.; Luo, W.; Chen, S. A.; Lin, F.; Zhang, X.; Fan, S. J.; Shen, X.; Wang, Y.; Liang, G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics 2020, 10, 10290–10308.

    CAS  Google Scholar 

  2. An, L. M.; Li, Z. R.; Shi, L. Q.; Wang, L. J.; Wang, Y.; Jin, L.; Shuai, X. T.; Li, J. G. Inflammation-targeted celastrol nanodrug attenuates collagen-induced arthritis through NF-κB and notch1 pathways. Nano Lett. 2020, 20, 7728–7736.

    CAS  Google Scholar 

  3. Qiu, F.; Xi, L.; Chen, S. S.; Zhao, Y. H.; Wang, Z. P.; Zheng, Y. Celastrol niosome hydrogel has anti-inflammatory effect on skin keratinocytes and circulation without systemic drug exposure in psoriasis mice. Int. J. Nanomedicine 2021, 16, 6171–6182.

    Google Scholar 

  4. Yang, J. D.; Hainaut, P.; Gores, G. J.; Amadou, A.; Plymoth, A.; Roberts, L. R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604.

    Google Scholar 

  5. Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 2010, 363, 2434–2443.

    CAS  Google Scholar 

  6. Huang, Y.; Zhao, Y. L.; Liu, F.; Liu, S. Q. Nano traditional Chinese medicine: Current progresses and future challenges. Curr. Drug Targets 2015, 16, 1548–1562.

    CAS  Google Scholar 

  7. Wei, D. H.; Yang, H.; Zhang, Y.; Zhang, X. H.; Wang, J.; Wu, X. L.; Chang, J. Nano-traditional Chinese medicine: A promising strategy and its recent advances. J. Mater. Chem. B 2022, 10, 2973–2994.

    CAS  Google Scholar 

  8. Zheng, Y. H.; Wang, Y.; Xia, M. Y.; Gao, Y.; Zhang, L.; Song, Y. N.; Zhang, C. The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: Review on nanotechnology in TCM-based drug delivery systems. Drug Deliv. Transl. Res. 2022, 12, 1306–1325.

    Google Scholar 

  9. Li, T.; Wang, P. L.; Guo, W. B.; Huang, X. M.; Tian, X. H.; Wu, G. R.; Xu, B.; Li, F. F.; Yan, C.; Liang, X. J. et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano 2019, 13, 6770–6781.

    CAS  Google Scholar 

  10. Xia, J. X.; Ma, S. J.; Zhu, X.; Chen, C.; Zhang, R.; Cao, Z. L.; Chen, X.; Zhang, L. L.; Zhu, Y.; Zhang, S. Y. et al. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci. Adv. 2022, 8, eabj1262.

    CAS  Google Scholar 

  11. Wang, P. L.; Guo, W. B.; Huang, G. R.; Zhen, J. H.; Li, Y. N.; Li, T.; Zhao, L.; Yuan, K.; Tian, X. H.; Huang, X. M. et al. Berberine-based heterogeneous linear supramolecules neutralized the acute nephrotoxicity of aristolochic acid by the self-assembly strategy. ACS Appl. Mater. Interfaces 2021, 13, 32729–32742.

    CAS  Google Scholar 

  12. Ke, L. J.; Gao, G. Z.; Shen, Y.; Zhou, J. W.; Rao, P. F. Encapsulation of aconitine in self-assembled licorice protein nanoparticles reduces the toxicity in vivo. Nanoscale Res. Lett. 2015, 10, 449.

    Google Scholar 

  13. Ma, B. L.; Yin, C.; Zhang, B. K.; Dai, Y.; Jia, Y. Q.; Yang, Y.; Li, Q.; Shi, R.; Wang, T. M.; Wu, J. S. et al. Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. Sci. Rep. 2016, 6, 20110.

    CAS  Google Scholar 

  14. Wu, J. J.; Yang, Y.; Yuan, X. Y.; Xu, H. H.; Chen, Q. Q.; Ren, R. R.; Zhang, Q. Q.; Hou, Z. Y.; Jiao, F.; Yin, D. K. Role of particle aggregates in herbal medicine decoction showing they are not useless: Considering Coptis chinensis decoction as an example. Food Funct. 2020, 11, 10480–10492.

    CAS  Google Scholar 

  15. Zhang, Q. Q.; Yang, Y.; Ren, R. R.; Chen, Q. Q.; Wu, J. J.; Zheng, Y. Y.; Hou, X. H.; Zhang, Y. F.; Xue, M. S.; Yin, D. K. Self-assembled aggregations in Coptidis Rhizoma decoction dynamically regulate intestinal tissue permeability through Peyer’s patch-associated immunity. Chin. Herb. Med. 2021, 13, 370–380.

    CAS  Google Scholar 

  16. Zhao, J.; Zhao, Q.; Lu, J. Z.; Ye, D.; Mu, S.; Yang, X. D.; Zhang, W. D.; Ma, B. L. Natural nano-drug delivery system in Coptidis Rhizoma extract with modified berberine hydrochloride pharmacokinetics. Int. J. Nanomedicine 2021, 16, 6297–6311.

    Google Scholar 

  17. Luan, X.; Zhang, L. J.; Li, X. Q.; Rahman, K.; Zhang, H.; Chen, H. Z.; Zhang, W. D. Compound-based Chinese medicine formula: From discovery to compatibility mechanism. J. Ethnopharmacol. 2020, 254, 112687.

    CAS  Google Scholar 

  18. Jiang, X.; Sun, Y.; Shang, L. H.; Yang, C. L.; Kong, L.; Zhang, Z. P. Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. J. Mater. Chem. B 2019, 7, 5972–5982.

    CAS  Google Scholar 

  19. Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M. H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine 2017, 12, 2689–2702.

    CAS  Google Scholar 

  20. Pang, G. B.; Chen, C.; Liu, Y.; Jiang, T. Y.; Yu, H.; Wu, Y. X.; Wang, Y. Y.; Wang, F. J.; Liu, Z. Y.; Zhang, L. W. Bioactive polysaccharide nanoparticles improve radiation-induced abscopal effect through manipulation of dendritic cells. ACS Appl. Mater. Interfaces 2019, 11, 42661–42670.

    CAS  Google Scholar 

  21. Huang, Y. J.; Wang, Y. J.; Wang, Y. Z.; Yi, S. J.; Fan, Z.; Sun, L. M.; Lin, D.; Anreddy, N.; Zhu, H.; Schmidt, M. et al. Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater. 2015, 25, 268–283.

    CAS  Google Scholar 

  22. Frisoli, M. L.; Essien, K.; Harris, J. E. Vitiligo: Mechanisms of pathogenesis and treatment. Annu. Rev. Immunol. 2020, 38, 621–648.

    CAS  Google Scholar 

  23. Wang, Y. H.; Li, S. L.; Li, C. Y. Perspectives of new advances in the pathogenesis of vitiligo: From oxidative stress to autoimmunity. Med. Sci. Monit. 2019, 25, 1017–1023.

    CAS  Google Scholar 

  24. Zhou, J. W.; Zhang, J.; Gao, G. Z.; Wang, H. Q.; He, X. Y.; Chen, T. B.; Ke, L. J.; Rao, P. F.; Wang, Q. Boiling licorice produces self-assembled protein nanoparticles: A novel source of bioactive nanomaterials. J. Agric. Food Chem. 2019, 67, 9354–9361.

    CAS  Google Scholar 

  25. Wu, X. L.; Gong, F. P.; Wang, W. Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics 2014, 14, 645–658.

    CAS  Google Scholar 

  26. Zhang, M. Z.; Viennois, E.; Prasad, M.; Zhang, Y. C.; Wang, L. X.; Zhang, Z.; Han, M. K.; Xiao, B.; Xu, C. L.; Srinivasan, S. et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340.

    CAS  Google Scholar 

  27. Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.

    Google Scholar 

  28. Zhang, J.; Hu, K. L.; Di, L. Q.; Wang, P. L.; Liu, Z. D.; Zhang, J. M.; Yue, P. F.; Song, W. T.; Zhang, J. W.; Chen, T. K. et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv. Drug Deliv. Rev. 2021, 178, 113964.

    CAS  Google Scholar 

  29. Wei, Y. C.; Quan, L.; Zhou, C.; Zhan, Q. Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond.) 2018, 13, 1495–1512.

    CAS  Google Scholar 

  30. Wang, Y. F.; Wang, X. Y. Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles. Food Chem. 2015, 188, 24–29.

    CAS  Google Scholar 

  31. Armstrong, A. W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020, 323, 1945–1960.

    CAS  Google Scholar 

  32. Boehncke, W. H.; Schön, M. P. Psoriasis. Lancet 2015, 386, 983–994.

    CAS  Google Scholar 

  33. Lowes, M. A.; Bowcock, A. M.; Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873.

    CAS  Google Scholar 

  34. Feldman, S. R. Psoriasis causes as much disability as other major medical diseases. J. Am. Acad. Dermatol. 2020, 82, 256–257.

    Google Scholar 

  35. Wang, Z. Y.; Nixon, D. W. Licorice and cancer. Nutr. Cancer 2001, 39, 1–11.

    CAS  Google Scholar 

  36. Wang, L.; Xian, Y. F.; Loo, S. K. F.; Ip, S. P.; Yang, W.; Chan, W. Y.; Lin, Z. X.; Wu, J. C. Y. Baicalin ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway. Bioorg. Chem. 2022, 119, 105538.

    CAS  Google Scholar 

  37. Hung, C. H.; Wang, C. N.; Cheng, H. H.; Liao, J. W.; Chen, Y. T.; Chao, Y. W.; Jiang, J. L.; Lee, C. C. Baicalin ameliorates imiquimod-induced psoriasis-like inflammation in mice. Planta Med. 2018, 84, 1110–1117.

    CAS  Google Scholar 

  38. Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021, 397, 754–766.

    CAS  Google Scholar 

  39. Zhang, L. L.; Wei, W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther. 2020, 207, 107452.

    CAS  Google Scholar 

  40. Zhao, J. X.; Di, T. T.; Wang, Y.; Wang, Y.; Liu, X.; Liang, D. Y.; Li, P. Paeoniflorin inhibits imiquimod-induced psoriasis in mice by regulating Th17 cell response and cytokine secretion. Eur. J. Pharmacol. 2016, 772, 131–143.

    CAS  Google Scholar 

  41. Liu, Z. H.; Wang, P. W.; Lu, S. S.; Guo, R.; Gao, W.; Tong, H. Y.; Yin, Y.; Han, X. Z.; Liu, T. T.; Chen, X. Y. et al. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium 2020, 88, 102198.

    CAS  Google Scholar 

  42. Ni, H. D.; Xu, M.; Xie, K. Y.; Fei, Y.; Deng, H. S.; He, Q. L.; Wang, T. T.; Liu, S. L.; Zhu, J. J.; Xu, L. S. et al. Liquiritin alleviates pain through inhibiting CXCL1/CXCR2 signaling pathway in bone cancer pain rat. Front. Pharmacol. 2020, 11, 436.

    CAS  Google Scholar 

  43. Yang, X. H.; Dang, X. W.; Zhang, X.; Zhao, S. R. Liquiritin reduces lipopolysaccharide-aroused HaCaT cell inflammation damage via regulation of microRNA-31/MyD88. Int. Immunopharmacol. 2021, 101, 108283.

    CAS  Google Scholar 

  44. Guo, Q. Y.; Li, W. J.; Wang, C.; Mao, X.; Wang, X. Y.; Chen, W. J.; Xu, H. Y.; Wang, Q.; Zhang, Y. Q.; Lin, N. Biomolecular network-based synergistic drug combination discovery: A combination of paeoniflorin and liquiritin alleviates neuropathic pain by inhibiting neuroinflammation via suppressing the chemokine signaling pathway. Signal Transduct. Target. Ther. 2020, 5, 73.

    CAS  Google Scholar 

  45. Zhao, Q.; Luan, X.; Zheng, M.; Tian, X. H.; Zhao, J.; Zhang, W. D.; Ma, B. L. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics 2020, 12, 128.

    CAS  Google Scholar 

  46. Shi, Q.; He, Q.; Chen, W. M.; Long, J. W.; Zhang, B. Ginsenoside Rg1 abolish imiquimod-induced psoriasis-like dermatitis in BALB/c mice via downregulating NF-κB signaling pathway. J. Food Biochem. 2019, 43, e13032.

    Google Scholar 

  47. Chung, C. H.; Jung, W.; Keum, H.; Kim, T. W.; Jon, S. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease. ACS Nano 2020, 14, 6887–6896.

    CAS  Google Scholar 

  48. Xi, L.; Lin, Z. B.; Qiu, F.; Chen, S. K.; Li, P.; Chen, X.; Wang, Z. P.; Zheng, Y. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm. Sin. B 2022, 12, 339–352.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 82173760 and 82104098), the Program for HUST Academic Frontier Youth Team (No. 2018QYTD13), and Scientific Research Project of Wuhan Municipal Health Commission (No. WX20Q16). Thanks to the TEM provided by the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Conglian Yang or Zhiping Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, D., Shi, T. et al. De novo engineering of nanoformulation from traditional Chinese medicine mixtures for psoriasis. Nano Res. 16, 5279–5291 (2023). https://doi.org/10.1007/s12274-022-5199-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5199-0

Keywords

Navigation