Skip to main content
Log in

Repurposing organic semiconducting nanomaterials to accelerate clinical translation of NIR-II fluorescence imaging

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Optical imaging possesses important implications for early disease diagnosis, timely disease treatment, and basic medical as well as biological research. Compared with the traditionary near-infrared (NIR-I) window (650–950 nm) optical imaging, the emerging second near-infrared (NIR-II) window optical imaging technology owns the great superiorities of non-invasiveness, nonionizing radiation, and real-time dynamic imaging with the low biological interference, can significantly improve the tissue penetration depth and detection sensitivity, thus expecting to achieve accurate and precise diagnosis of major diseases. Inspired by the conspicuous superiorities, an increasing number of versatile NIR-II fluorophores have been legitimately designed and engineered for precisely deep-tissue mapping-mediated theranostics of life-threatening diseases. Organic semiconducting nanomaterials (OSNs) are derived from organic conjugated molecules with π-electron delocalized skeletons, which show greatly preponderant prospects in the biomedicine field due to the excellent photoelectric property, tunable energy bands, and fine biocompatibility. In this review, the superiorities of NIR-II fluorescence imaging using OSNs for brilliant visualization various of diseases, including tongue cancer, ovarian cancer, osteosarcoma, bacteria or pathogens infection, kidney dysfunction, rheumatoid arthritis, liver injury, and cerebrovascular function, are emphatically summarized. Finally, the reasonable prospects and persistent efforts for repurposing OSNs to facilitate the clinical translation of NIR-II fluorescence phototheranostics are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. S.; Li, Y.; Koo, S.; Sun, Y.; Liu, Y. X.; Liu, X.; Pan, Y. N.; Zhang, Z. Y.; Du, M. M.; Lu, S. Y. et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: From strategic design toward molecular imaging and theranostics. Chem. Rev. 2022, 122, 209–268.

    CAS  Google Scholar 

  2. Zhang, C.; Yan, K.; Fu, C. K.; Peng, H.; Hawker, C. J.; Whittaker, A. K. Biological utility of fluorinated compounds: From materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 2022, 122, 167–208.

    CAS  Google Scholar 

  3. Zhao, M. Y.; Wang, J. B.; Lei, Z. H.; Lu, L. F.; Wang, S. F.; Zhang, H. X.; Li, B. H.; Zhang, F. NIR-II pH sensor with a FRET adjustable transition point for in situ dynamic tumor microenvironment visualization. Angew. Chem., Int. Ed. 2021, 60, 5091–5095.

    CAS  Google Scholar 

  4. Chen, C.; Tian, R.; Zeng, Y.; Chu, C. C.; Liu, G. Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging: From NIR-I to NIR-II. Bioconjugate Chem. 2020, 31, 276–292.

    CAS  Google Scholar 

  5. Ding, F.; Feng, J.; Zhang, X. L.; Sun, J. L.; Fan, C. H.; Ge, Z. L. Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv. Drug Delivery Rev. 2021, 173, 141–163.

    CAS  Google Scholar 

  6. Xiang, Y. X.; Zheng, G. R.; Liang, Z. T.; Jin, Y. T.; Liu, X. S.; Chen, S. J.; Zhou, K.; Zhu, J. P.; Lin, M.; He, H. J. et al. Visualizing the growth process of sodium microstructures in sodium batteries by in-situ23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 2020, 15, 883–890.

    CAS  Google Scholar 

  7. Wahsner, J.; Gale, E. M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem. Rev. 2019, 119, 957–1057.

    CAS  Google Scholar 

  8. Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H. L.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 2016, 11, 724–730.

    CAS  Google Scholar 

  9. Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M. W.; Shi, X. Y. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47, 1874–1900.

    CAS  Google Scholar 

  10. Hu, X. M.; Zhan, C.; Tang, Y. F.; Lu, F.; Li, Y. Y.; Pei, F.; Lu, X. M.; Ji, Y.; Li, J.; Wang, W. J. et al. Intelligent polymer-MnO2 nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. Chem. Commun. 2019, 55, 6006–6009.

    CAS  Google Scholar 

  11. Jin, X.; Yang, W. T.; Xu, Y.; Bian, K. X.; Zhang, B. B. Emerging strategies of activatable MR imaging probes and their advantages for biomedical applications. View 2021, 2, 20200141.

    Google Scholar 

  12. Saul, E. E.; Guerra, R. B.; Saul, M. E.; Da Silva, L. L.; Aleixo, G. F. P.; Matuda, R. M. K.; Lopes, G. The challenges of implementing low-dose computed tomography for lung cancer screening in low- and middle-income countries. Nat. Cancer 2020, 1, 1140–1152.

    Google Scholar 

  13. Lee, N.; Choi, S. H.; Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 2013, 25, 2641–2660.

    CAS  Google Scholar 

  14. Zhou, W.; Chen, Y.; Zhang, Y. T.; Xin, X. Y.; Li, R. T.; Xie, C.; Fan, Q. L. Iodine-rich semiconducting polymer nanoparticles for CT/fluorescence dual-modal imaging-guided enhanced photodynamic therapy. Small 2020, 16, 1905641.

    CAS  Google Scholar 

  15. Chen, Y. Y.; Cheng, L.; Dong, Z. L.; Chao, Y.; Lei, H. L.; Zhao, H.; Wang, J.; Liu, Z. Degradable vanadium disulfide nanostructures with unique optical and magnetic functions for cancer theranostics. Angew. Chem., Int. Ed. 2017, 56, 12991–12996.

    CAS  Google Scholar 

  16. Guo, Z. D.; Gao, M. N.; Song, M. L.; Li, Y. S.; Zhang, D. L.; Xu, D.; You, L. Y.; Wang, L. L.; Zhuang, R. Q.; Su, X. H. et al. Superfluorinated PEI derivative coupled with 99mTc for ASGPR targeted 19F MRI/SPECT/PA tri-modality imaging. Adv. Mater. 2016, 28, 5898–5906.

    CAS  Google Scholar 

  17. Yi, X.; Xu, M. Y.; Zhou, H. L.; Xiong, S. S.; Qian, R.; Chai, Z. F.; Zhao, L.; Yang, K. Ultrasmall hyperbranched semiconducting polymer nanoparticles with different radioisotopes labeling for cancer theranostics. ACS Nano 2018, 12, 9142–9151.

    CAS  Google Scholar 

  18. Zhang, X. L.; Zhao, M.; Wen, L.; Wu, M. R.; Yang, Y.; Zhang, Y. J.; Wu, Y.; Zhong, J.; Shi, H. B.; Zeng, J. F. et al. Sequential SPECT and NIR-II imaging of tumor and sentinel lymph node metastasis for diagnosis and image-guided surgery. Biomater. Sci. 2021, 9, 3069–3075.

    CAS  Google Scholar 

  19. Pisaneschi, F.; Gammon, S. T.; Paolillo, V.; Qureshy, S. A.; Piwnica-Worms, D. Imaging of innate immunity activation in vivo with a redox-tuned PET reporter. Nat. Biotechnol. 2022, 40, 965–973.

    CAS  Google Scholar 

  20. Yang, Z.; Tian, R.; Wu, J. J.; Fan, Q. L.; Yung, B. C.; Niu, G.; Jacobson, O.; Wang, Z. T.; Liu, G.; Yu, G. C. et al. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano 2017, 11, 4247–4255.

    CAS  Google Scholar 

  21. Du, X. S.; Ma, H. D.; Zhang, X. W.; Zhou, M.; Liu, Z. Y.; Wang, H.; Wang, G. L.; Jin, R. C. Single-electron charging and ultrafast dynamics of bimetallic Au144−xAgx(PET)60 nanoclusters. Nano Res. 2022, 15, 8573–8578.

    CAS  Google Scholar 

  22. Scharf, J.; Chouchane, M.; Finegan, D. P.; Lu, B. Y.; Redquest, C.; Kim, M. C.; Yao, W. L.; Franco, A. A.; Gostovic, D.; Liu, Z. et al. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 2022, 17, 446–459.

    CAS  Google Scholar 

  23. Jiang, Y. Y.; Pu, K. Y. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 2021, 121, 13086–13131.

    CAS  Google Scholar 

  24. Feng, Z.; Tang, T.; Wu, T. X.; Yu, X. M.; Zhang, Y. H.; Wang, M.; Zheng, J. Y.; Ying, Y. Y.; Chen, S. Y.; Zhou, J. et al. Perfecting and extending the near-infrared imaging window. Light: Sci. Appl. 2021, 14, 197.

    Google Scholar 

  25. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

    CAS  Google Scholar 

  26. Pei, P.; Chen, Y.; Sun, C. X.; Fan, Y.; Yang, Y. M.; Liu, X.; Lu, L. F.; Zhao, M. Y.; Zhang, H. X.; Zhao, D. Y. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018.

    CAS  Google Scholar 

  27. Mu, J.; Xiao, M.; Shi, Y.; Geng, X. W.; Li, H.; Yin, Y. X.; Chen, X. Y. The chemistry of organic contrast agents in the NIR-II window. Angew. Chem., Int. Ed. 2022, 61, e202114722.

    CAS  Google Scholar 

  28. Yang, Z.; Li, L.; Jin, A. J.; Huang, W.; Chen, X. Y. Rational design of semiconducting polymer brushes as cancer theranostics. Mater. Horiz. 2020, 7, 1474–1494.

    CAS  Google Scholar 

  29. Hu, X. M.; Lu, F.; Chen, L.; Tang, Y. F.; Hu, W. B.; Lu, X. M.; Ji, Y.; Yang, Z.; Zhang, W. S.; Yin, C. et al. Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T1-weighted magnetic resonance imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 30458–30469.

    CAS  Google Scholar 

  30. Bashkatov, A. N.; Genina, E. A.; Kochubey, V. I.; Tuchin, V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys. 2005, 38, 2543–2555.

    CAS  Google Scholar 

  31. Li, L.; Wang, L. V. Recent advances in photoacoustic tomography. BME Front. 2021, 2021, 9823268.

    Google Scholar 

  32. Chang, B. S.; Li, D. F.; Ren, Y.; Qu, C. C.; Shi, X. J.; Liu, R. Q.; Liu, H. G.; Tian, J.; Hu, Z. H.; Sun, T. L. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng. 2022, 6, 629–639.

    CAS  Google Scholar 

  33. Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 64, 16294–16308.

    Google Scholar 

  34. Li, K.; Duan, X. C.; Jiang, Z. Y.; Ding, D.; Chen, Y. C.; Zhang, G. Q.; Liu, Z. P. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat. Commun. 2021, 12, 2376.

    CAS  Google Scholar 

  35. Liu, D. K.; He, Z. X.; Zhao, Y. Y.; Yang, Y. T.; Shi, W.; Li, X. H.; Ma, H. M. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 2021, 143, 17136–17143.

    CAS  Google Scholar 

  36. Liu, S. J.; Li, Y. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 2021, 12, 3427–3436.

    CAS  Google Scholar 

  37. Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.

    CAS  Google Scholar 

  38. Hu, X. M.; Chen, Z. J.; Ao, H. Y.; Fan, Q. L.; Yang, Z.; Huang, W. Rational molecular engineering of organic semiconducting nanoplatforms for advancing NIR-II fluorescence theranostics. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202201067.

  39. Luo, X. P.; Hu, D. H.; Gao, D. Y.; Wang, Y. N.; Chen, X. H.; Liu, X.; Zheng, H. R.; Sun, M. J.; Sheng, Z. H. Metabolizable near-infrared-II nanoprobes for dynamic imaging of deep-seated tumor-associated macrophages in pancreatic cancer. ACS Nano 2021, 15, 10010–10024.

    CAS  Google Scholar 

  40. Min, X. H.; Zhang, J.; Li, R. H.; Xia, F. F.; Cheng, S. Q.; Li, M.; Zhu, W. W.; Zhou, W.; Li, F.; Sun, Y. Encapsulation of NIR-II AIEgens in virus-like particles for bioimaging. ACS Appl. Mater. Interfaces 2021, 13, 17372–17379.

    CAS  Google Scholar 

  41. Hu, X. M.; Chen, Z. J.; Jin, A. J.; Yang, Z.; Gan, D. Q.; Wu, A. F.; Ao, H. Y.; Huang, W.; Fan, Q. L. Rational design of all-organic nanoplatform for highly efficient MR/NIR-II imaging-guided cancer phototheranostics. Small 2021, 17, 2007566.

    CAS  Google Scholar 

  42. Wang, Z. H.; She, M. Y.; Chen, J.; Cheng, Z. Q.; Li, J. L. Rational modulation strategies to improve bioimaging applications for organic NIR-II fluorophores. Adv. Opt. Mater. 2022, 14, 2101634.

    Google Scholar 

  43. Xu, Z. R.; Jiang, Y. H.; Fan, M. Z.; Tang, S.; Liu, M. X.; Law, W. C.; Yang, C. B.; Ying, M.; Ma, M. Z.; Dong, B. Q. et al. Aggregation-induced emission nanoprobes working in the NIR-II region: From material design to fluorescence imaging and phototherapy. Adv. Opt. Mater. 2021, 9, 2100859.

    CAS  Google Scholar 

  44. Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818–9821.

    CAS  Google Scholar 

  45. Li, Y. Y.; Zhang, P. S.; Tang, W.; McHugh, K. J.; Kershaw, S. V.; Jiao, M. X.; Huang, X. D.; Kalytchuk, S.; Perkinson, C. F.; Yue, S. S. et al. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 2022, 16, 8076–8094.

    CAS  Google Scholar 

  46. Qu, S. H.; Jia, Q.; Li, Z.; Wang, Z. L.; Shang, L. Chiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Sci. Bull. 2022, 67, 1274–1283.

    CAS  Google Scholar 

  47. Wang, F. F.; Ren, F. Q.; Ma, Z. R.; Qu, L. Q.; Gourgues, R.; Xu, C.; Baghdasaryan, A.; Li, J. C.; Zadeh, I. E.; Los, J. W. N. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 2022, 17, 653–660.

    CAS  Google Scholar 

  48. Liang, C.; Diao, S.; Wang, C.; Gong, H.; Liu, T.; Hong, G. S.; Shi, X. Z.; Dai, H. J.; Liu, Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 2014, 26, 5646–5652.

    CAS  Google Scholar 

  49. Mandal, A. K.; Wu, X. J.; Ferreira, J. S.; Kim, M.; Powell, L. R.; Kwon, H.; Groc, L.; Wang, Y. H.; Cognet, L. Fluorescent sp3 defect-tailored carbon nanotubes enable NIR-II single particle imaging in live brain slices at ultra-low excitation doses. Sci. Rep. 2020, 10, 5286.

    CAS  Google Scholar 

  50. Zheng, Z. L.; Jia, Z.; Qin, Y. F.; Dai, R.; Chen, X. J.; Ma, Y. C.; Xie, X. M.; Zhang, R. P. All-in-one zeolite-carbon-based nanotheranostics with adjustable NIR-II window photoacoustic/fluorescence imaging performance for precise NIR-II photothermal-synergized catalytic antitumor therapy. Small 2021, 17, 2103252.

    CAS  Google Scholar 

  51. Wang, W. L.; Kong, Y. F.; Jiang, J.; Xie, Q. Q.; Huang, Y.; Li, G. N.; Wu, D.; Zheng, H. Z.; Gao, M.; Xu, S. J. et al. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging. Angew. Chem., Int. Ed. 2020, 59, 22431–22435.

    CAS  Google Scholar 

  52. Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

    CAS  Google Scholar 

  53. Li, D. L.; Liu, Q.; Qi, Q. R.; Shi, H.; Hsu, E. C.; Chen, W. Y.; Yuan, W. L.; Wu, Y. F.; Lin, S. E.; Zeng, Y. T. et al. Gold nanoclusters for NIR-II fluorescence imaging of bones. Small 2020, 16, 2003851.

    CAS  Google Scholar 

  54. He, S. Q.; Chen, S.; Li, D. F.; Wu, Y. F.; Zhang, X.; Liu, J. F.; Song, J.; Liu, L. W.; Qu, J. L.; Cheng, Z. High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging. Nano Lett. 2019, 19, 2985–2992.

    CAS  Google Scholar 

  55. Lv, Z. J.; Jin, L. H.; Cao, Y.; Zhang, H.; Xue, D. Z.; Yin, N.; Zhang, T. Q.; Wang, Y. H.; Liu, J. H.; Liu, X. G. et al. A nanotheranostic agent based on Nd3+-doped YVO4 with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma. Light:Sci. Appl. 2022, 11, 116.

    CAS  Google Scholar 

  56. Yang, J. Y.; He, S. Q.; Hu, Z. H.; Zhang, Z. Y.; Cao, C. G.; Cheng, Z.; Fang, C. H.; Tian, J. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today 2021, 38, 101120.

    CAS  Google Scholar 

  57. Zhang, X.; He, S. Q.; Ding, B. B.; Qu, C. R.; Zhang, Q.; Chen, H.; Sun, Y.; Fang, H. Y.; Long, Y.; Zhang, R. P. et al. Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chem. Eng. J. 2020, 385, 123959.

    CAS  Google Scholar 

  58. Yang, Z. B.; Chen, H. R. The recent progress of inorganic-based intelligent responsive nanoplatform for tumor theranostics. View, in press, https://doi.org/10.1002/VIW.20220009.

  59. Li, J. C.; Pu, K. Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 2019, 48, 38–71.

    CAS  Google Scholar 

  60. Miao, Q. Q.; Pu, K. Y. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 2018, 30, 1801778.

    Google Scholar 

  61. Hu, X. M.; Tang, Y. F.; Hu, Y. X.; Lu, F.; Lu, X. M.; Wang, Y. Q.; Li, J.; Li, Y. Y.; Ji, Y.; Wang, W. J. et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 2019, 9, 4168–4181.

    CAS  Google Scholar 

  62. Zeng, Z. L.; Zhang, C.; He, S. S.; Li, J. C.; Pu, K. Y. Activatable cancer sono-immunotherapy using semiconducting polymer nanobodies. Adv. Mater. 2022, 34, 2203246.

    CAS  Google Scholar 

  63. Li, J. C.; Huang, J. G.; Lyu, Y.; Huang, J. S.; Jiang, Y. Y.; Xie, C.; Pu, K. Y. Photoactivatable organic semiconducting pronanoenzymes. J. Am. Chem. Soc. 2019, 141, 4073–4079.

    CAS  Google Scholar 

  64. Shuhendler, A. J.; Pu, K. Y.; Cui, L. N.; Uetrecht, J. P.; Rao, J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 2014, 32, 373–380.

    CAS  Google Scholar 

  65. Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849.

    CAS  Google Scholar 

  66. He, S. S.; Jiang, Y. Y.; Li, J. C.; Pu, K. Y. Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer. Angew. Chem., Int. Ed. 2020, 59, 10633–10638.

    CAS  Google Scholar 

  67. Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z. N.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.

    CAS  Google Scholar 

  68. Li, J. C.; Pu, K. Y. Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Acc. Chem. Res. 2020, 53, 752–762.

    CAS  Google Scholar 

  69. Ouspenskaia, T.; Law, T.; Clauser, K. R.; Klaeger, S.; Sarkizova, S.; Aguet, F.; Li, B.; Christian, E.; Knisbacher, B. A.; Le, P. M. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 2022, 40, 209–217.

    CAS  Google Scholar 

  70. Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C. R.; Keppler, B. K.; Berger, W. Metal drugs and the anticancer immune response. Chem. Rev. 2019, 119, 1519–1624.

    CAS  Google Scholar 

  71. Walsh, S. J.; Bargh, J. D.; Dannheim, F. M.; Hanby, A. R.; Seki, H.; Counsell, A. J.; Ou, X. X.; Fowler, E.; Ashman, N.; Takada, Y. et al. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 2021, 50, 1305–1353.

    CAS  Google Scholar 

  72. Cao, Z.; Pan, X.; Yu, H. Y.; Hua, S. Y.; Wang, D.; Chen, D. Z.; Zhou, M.; Wu, J. A deep learning approach for detecting colorectal cancer via Raman spectra. BME Front. 2022, 2022, 9872028.

    Google Scholar 

  73. Asensio, N. C.; Giner, E. M.; De Groot, N. S.; Burgas, M. T. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection. Nat. Commun. 2017, 8, 14092.

    Google Scholar 

  74. Han, D. L.; Liu, X. M.; Wu, S. L. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem. Soc. Rev. 2022, 51, 7138–7169.

    CAS  Google Scholar 

  75. Pirzada, M.; Altintas, Z. Nanomaterials for virus sensing and tracking. Chem. Soc. Rev. 2022, 51, 5805–5841.

    CAS  Google Scholar 

  76. Cheng, P. H.; Chen, W.; Li, S. H.; He, S. S.; Miao, Q. Q.; Pu, K. Y. Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. Adv. Mater. 2020, 32, 1908530.

    CAS  Google Scholar 

  77. Cheng, P. H.; Miao, Q. Q.; Huang, J. G.; Li, J. C.; Pu, K. Y. Multiplex optical urinalysis for early detection of drug-induced kidney injury. Anal. Chem. 2020, 92, 6166–6172.

    CAS  Google Scholar 

  78. Huang, J. S.; Huang, J. G.; Cheng, P. H.; Jiang, Y. Y.; Pu, K. Y. Near-infrared chemiluminescent reporters for in vivo imaging of reactive oxygen and nitrogen species in kidneys. Adv. Funct. Mater. 2020, 30, 2003628.

    CAS  Google Scholar 

  79. Chen, F. F.; Teng, L. L.; Lu, C.; Zhang, C.; Rong, Q. M.; Zhao, Y.; Yang, Y.; Wang, Y. J.; Song, G. S.; Zhang, X. B. Activatable magnetic/photoacoustic nanoplatform for redox-unlocked deep-tissue molecular imaging in vivo via prussian blue nanoprobe. Anal. Chem. 2020, 92, 13452–13461.

    CAS  Google Scholar 

  80. He, W. X.; Mei, Q. Y.; Li, J.; Zhai, Y. T.; Chen, Y. T.; Wang, R.; Lu, E. H.; Zhang, X. Y.; Zhang, Z. W.; Sha, X. Y. Preferential targeting cerebral ischemic lesions with cancer cell-inspired nanovehicle for ischemic stroke treatment. Nano Lett. 2021, 21, 3033–3043.

    CAS  Google Scholar 

  81. Megia-Fernandez, A.; Marshall, A.; Akram, A. R.; Mills, B.; Chankeshwara, S. V.; Scholefield, E.; Miele, A.; McGorum, B. C.; Michaels, C.; Knighton, N. et al. Optical detection of distal lung enzyme activity in human inflammatory lung disease. BME Front. 2021, 2021, 9834163.

    Google Scholar 

  82. Cheng, P. H.; Pu, K. Y. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat. Rev. Mater. 2021, 6, 1095–1113.

    CAS  Google Scholar 

  83. Chen, J. Q.; Qi, J.; Chen, C.; Chen, J. H.; Liu, L. J.; Gao, R. K.; Zhang, T. T.; Song, L.; Ding, D.; Zhang, P. et al. Tocilizumab-conjugated polymer nanoparticles for NIR-II photoacousticimaging-guided therapy of rheumatoid arthritis. Adv. Mater. 2020, 32, 2003399.

    CAS  Google Scholar 

  84. Fan, X. X.; Xu, M. Z.; Leung, E. L. H.; Jun, C.; Yuan, Z.; Liu, L. ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria. Nano-Micro Lett. 2020, 12, 76.

    CAS  Google Scholar 

  85. Geng, W. B.; Chen, M. W.; Tao, B. L.; Wang, R.; Wang, D.; Li, K.; Lin, C. C.; Liu, X. Z.; Gao, P. F.; Luo, Z. et al. Cell-free DNA depletion via cell-penetrating poly(disulfide)s for rheumatoid arthritis therapy. Appl. Mater. Today 2022, 26, 101351.

    Google Scholar 

  86. Choi, H. S.; Kim, H. K. Multispectral image-guided surgery in patients. Nat. Biomed. Eng. 2020, 4, 245–246.

    Google Scholar 

  87. Hu, Z. H.; Fang, C.; Li, B.; Zhang, Z. Y.; Cao, C. G.; Cai, M. S.; Su, S.; Sun, X. W.; Shi, X. J.; Li, C. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020, 4, 259–271.

    Google Scholar 

  88. Kim, T.; O’Brien, C.; Choi, H. S.; Jeong, M. Y. Fluorescence molecular imaging systems for intraoperative image-guided surgery. Appl. Spectrosc. Rev. 2018, 53, 349–359.

    Google Scholar 

  89. Makvandi, P.; Josic, U.; Delfi, M.; Pinelli, F.; Jahed, V.; Kaya, E.; Ashrafizadeh, M.; Zarepour, A.; Rossi, F.; Zarrabi, A. et al. Drug delivery (nano)platforms for oral and dental applications: Tissue regeneration, infection control, and cancer management. Adv. Sci. 2021, 8, 2004014.

    CAS  Google Scholar 

  90. El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface Plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834.

    CAS  Google Scholar 

  91. Tan, G. Z.; Zhong, Y. T.; Yang, L. L.; Jiang, Y. D.; Liu, J. Q.; Ren, F. A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem. Eng. J. 2020, 390, 124446.

    CAS  Google Scholar 

  92. Yin, B. L.; Qin, Q. Q.; Li, Z.; Wang, Y. J.; Liu, X. L.; Liu, Y. C.; Huan, S. Y.; Zhang, X. B.; Song, G. S. Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment. Nano Today 2022, 45, 101550.

    CAS  Google Scholar 

  93. Ling, M. J.; Sun, R.; Li, G.; Syeda, M. Z.; Ma, W.; Mai, Z. Y.; Shao, L. Q.; Tang, L. G.; Yu, Z. Q. NIR-II emissive dye based polymer nanoparticle targeting EGFR for oral cancer theranostics. Nano Res. 2022, 15, 6288–6296.

    CAS  Google Scholar 

  94. Wei, Z.; Zhang, H.; Zou, H.; Song, C.; Zhao, S.; Cao, Z.; Zhang, X.; Zhang, G.; Cai, Y.; Han, W. A novel second near-infrared theranostic agent: A win-win strategy of tracing and blocking tumor-associated vessels for oral squamous cell carcinoma. Mater. Today Nano 2022, 17, 100172.

    CAS  Google Scholar 

  95. Färkkilä, A.; Gulhan, D. C.; Casado, J.; Jacobson, C. A.; Nguyen, H.; Kochupurakkal, B.; Maliga, Z.; Yapp, C.; Chen, Y. A.; Schapiro, D. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 2020, 11, 1459.

    Google Scholar 

  96. Izar, B.; Tirosh, I.; Stover, E. H.; Wakiro, I.; Cuoco, M. S.; Alter, I.; Rodman, C.; Leeson, R.; Su, M. J.; Shah, P. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 2020, 26, 1271–1279.

    CAS  Google Scholar 

  97. Menon, U.; Gentry-Maharaj, A.; Burnell, M.; Singh, N.; Ryan, A.; Karpinskyj, C.; Carlino, G.; Taylor, J.; Massingham, S. K.; Raikou, M. et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK collaborative trial of ovarian cancer screening (UKCTOCS): A randomised controlled trial. Lancet 2021, 397, 2182–2193.

    Google Scholar 

  98. Jiménez-Sánchez, A.; Cybulska, P.; Mager, K. L.; Koplev, S.; Cast, O.; Couturier, D. L.; Memon, D.; Selenica, P.; Nikolovski, I.; Mazaheri, Y. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet. 2020, 52, 582–593.

    Google Scholar 

  99. Kim, H.; Xu, H. N.; George, E.; Hallberg, D.; Kumar, S.; Jagannathan, V.; Medvedev, S.; Kinose, Y.; Devins, K.; Verma, P. et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 2020, 11, 3726.

    CAS  Google Scholar 

  100. Wang, P. Y.; Fan, Y.; Lu, L. F.; Liu, L.; Fan, L. L.; Zhao, M. Y.; Xie, Y.; Xu, C. J.; Zhang, F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 2018, 9, 2898.

    Google Scholar 

  101. Zhou, X. B.; Liu, Q. Y.; Yuan, W.; Li, Z. H.; Xu, Y. L.; Feng, W.; Xu, C. J.; Li, F. Y. Ultrabright NIR-II emissive polymer dots for metastatic ovarian cancer detection. Adv. Sci. 2021, 8, 2000441.

    CAS  Google Scholar 

  102. Lu, S. Y.; Xue, L. R.; Yang, M.; Wang, J. J.; Li, Y.; Jiang, Y. X.; Hong, X. C.; Wu, M. F.; Xiao, Y. L. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Res. 2022, 15, 9183–9191.

    CAS  Google Scholar 

  103. Zhou, H.; Yi, W. R.; Li, A. G.; Wang, B.; Ding, Q. H.; Xue, L. R.; Zeng, X. D.; Feng, Y. Z.; Li, Q. Q.; Wang, T. et al. Specific small-molecule NIR-II fluorescence imaging of osteosarcoma and lung metastasis. Adv. Healthc. Mater. 2020, 9, 1901224.

    CAS  Google Scholar 

  104. Li, D. F.; Zhang, C.; Tai, X. Y.; Xu, D. H.; Xu, J. Z.; Sun, P. F.; Fan, Q. L.; Cheng, Z.; Zhang, Y. 1064 nm activatable semiconducting polymer-based nanoplatform for NIR-II fluorescence/NIR-II photoacoustic imaging guided photothermal therapy of orthotopic osteosarcoma. Chem. Eng. J. 2022, 445, 136836.

    CAS  Google Scholar 

  105. Zheng, R. L.; Shi, Y. M.; Jia, Z. J.; Zhao, C. Y.; Zhang, Q.; Tan, X. R. Fast repair of DNA radicals. Chem. Soc. Rev. 2010, 39, 2827–2834.

    CAS  Google Scholar 

  106. Liao, N. S.; Su, L. C.; Zheng, Y. S.; Zhao, B. X.; Wu, M.; Zhang, D.; Yang, H. H.; Liu, X. L.; Song, J. B. In vivo tracking of cell viability for adoptive natural killer cell-based immunotherapy by ratiometric NIR-II fluorescence imaging. Angew. Chem., Int. Ed. 2021, 64, 20888–20896.

    Google Scholar 

  107. Jin, T. X.; Cheng, D.; Jiang, G. Y.; Xing, W. Q.; Liu, P. W.; Wang, B.; Zhu, W. P.; Sun, H. T.; Sun, Z. R.; Xu, Y. F. et al. Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioact. Mater. 2022, 14, 42–51.

    CAS  Google Scholar 

  108. Li, Z. L.; Lai, X. Q.; Fu, S. Q.; Ren, L.; Cai, H.; Zhang, H.; Gu, Z. W.; Ma, X. L.; Luo, K. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv. Sci. 2022, 9, 2201734.

    CAS  Google Scholar 

  109. Ni, K. Y.; Aung, T.; Li, S. Y.; Fatuzzo, N.; Liang, X. J.; Lin, W. B. Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 2019, 5, 1892–1913.

    CAS  Google Scholar 

  110. Shao, Y. L.; Liu, B.; Di, Z. H.; Zhang, G.; Sun, L. D.; Li, L. L.; Yan, C. H. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939–3946.

    CAS  Google Scholar 

  111. Wu, D.; Fan, Y. Y.; Yan, H. H.; Li, D. D.; Zhao, Z.; Chen, X. Q.; Yang, X. Z.; Liu, X. K. Oxidation-sensitive polymeric nanocarrier-mediated cascade PDT chemotherapy for synergistic cancer therapy and potentiated checkpoint blockade immunotherapy. Chem. Eng. J. 2021, 404, 126481.

    CAS  Google Scholar 

  112. Cheng, X. D.; Zhang, C.; Shen, K.; Liu, H. F.; Bai, C. H.; Ding, Q. H.; Guan, M. T.; Wu, J. Z.; Tian, Z. Q.; Chen, D. L. et al. Novel diketopyrrolopyrrole NIR-II fluorophores and DDR inhibitors for in vivo chemo-photodynamic therapy of osteosarcoma. Chem. Eng. J. 2022, 446, 136929.

    CAS  Google Scholar 

  113. Zipperer, A.; Konnerth, M. C.; Laux, C.; Berscheid, A.; Janek, D.; Weidenmaier, C.; Burian, M.; Schilling, N. A.; Slavetinsky, C.; Marschal, M. et al. Correction: Corrigendum: Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016, 539, 314.

    CAS  Google Scholar 

  114. Huang, Y.; Li, D.; Wang, D. L.; Chen, X. H.; Ferreira, L.; Martins, M. C. L.; Wang, Y. X.; Jin, Q.; Wang, D.; Tang, B. Z. et al. A NIR-II emissive polymer AIEgen for imaging-guided photothermal elimination of bacterial infection. Biomaterials 2022, 286, 121579.

    CAS  Google Scholar 

  115. Xu, Y. L.; Zhang, Y.; Li, J.; An, J.; Li, C. L.; Bai, S. Y.; Sharma, A.; Deng, G. Z.; Kim, J. S.; Sun, Y. NIR-II emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens. Biomaterials 2020, 259, 120315.

    CAS  Google Scholar 

  116. Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Y. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.

    CAS  Google Scholar 

  117. Huang, J. G.; Lyu, Y.; Li, J. C.; Cheng, P. H.; Jiang, Y. Y.; Pu, K. Y. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury. Angew. Chem., Int. Ed. 2019, 58, 17796–17804.

    CAS  Google Scholar 

  118. Huang, J. G.; Pu, K. Y. Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chem. Sci. 2021, 12, 3379–3392.

    CAS  Google Scholar 

  119. Chen, Y.; Pei, P.; Lei, Z. H.; Zhang, X.; Yin, D. R.; Zhang, F. A promising NIR-II fluorescent sensor for peptide-mediated long-term monitoring of kidney dysfunction. Angew. Chem., Int. Ed. 2021, 60, 15809–15815.

    CAS  Google Scholar 

  120. Huang, J. G.; Xie, C.; Zhang, X. D.; Jiang, Y. Y.; Li, J. C.; Fan, Q. L.; Pu, K. Y. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction. Angew. Chem., Int. Ed. 2019, 58, 15120–15127.

    CAS  Google Scholar 

  121. Tan, J. H.; Yin, K.; Ouyang, Z. R.; Wang, R. C.; Pan, H. M.; Wang, Z. J.; Zhao, C. C.; Guo, W.; Gu, X. F. Real-time monitoring renal impairment due to drug-induced AKI and diabetes-caused CKD using an NAG-activatable NIR-II nanoprobe. Anal. Chem. 2021, 93, 16158–16165.

    CAS  Google Scholar 

  122. Yi, W. R.; Zhou, H.; Li, A. G.; Yuan, Y.; Guo, Y. Q.; Li, P. C.; Qi, B. W.; Xiao, Y. L.; Yu, A. X.; Hu, X. A NIR-II fluorescent probe for articular cartilage degeneration imaging and osteoarthritis detection. Biomater. Sci. 2019, 7, 1043–1051.

    CAS  Google Scholar 

  123. Li, J.; Chen, L.; Xu, X. Y.; Fan, Y.; Xue, X.; Shen, M. W.; Shi, X. Y. Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform. Small 2020, 16, 2005661.

    CAS  Google Scholar 

  124. Li, L. Y.; Wang, X. L.; Gao, R. Y.; Zhang, B.; Liu, Y. X.; Zhou, J.; Fu, L. M.; Wang, J. Inflammation-triggered supramolecular nanoplatform for local dynamic dependent imaging-guided therapy of rheumatoid arthritis. Adv. Sci. 2022, 9, 2105188.

    CAS  Google Scholar 

  125. Qiao, H.; Mei, J. T.; Yuan, K.; Zhang, K.; Zhou, F.; Tang, T. T.; Zhao, J. Immune-regulating strategy against rheumatoid arthritis by inducing tolerogenic dendritic cells with modified zinc peroxide nanoparticles. J. Nanobiotechnol. 2022, 20, 323.

    CAS  Google Scholar 

  126. Song, Y. L.; Li, W.; Jing, H. Q.; Liang, X. Y.; Zhou, Y.; Li, N.; Feng, S. Q. Spatiotemporal sonodynamic therapy for the treatment of rheumatoid arthritis based on Z-scheme heterostructure sonosensitizer of HO-1 inhibitor jointed bismuth nanotriangle. Chem. Eng. J. 2022, 438, 135558.

    CAS  Google Scholar 

  127. Fan, X. X.; Xia, Q. M.; Zhang, Y. Y.; Li, Y. R.; Feng, Z.; Zhou, J.; Qi, J.; Tang, B. Z.; Qian, J.; Lin, H. Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD). Adv. Healthc. Mater. 2021, 10, 2101043.

    CAS  Google Scholar 

  128. Wu, P.; Zhu, Y.; Chen, L. L.; Tian, Y.; Xiong, H. A fast-responsive OFF-ON near-infrared-ii fluorescent probe for in vivo detection of hypochlorous acid in rheumatoid arthritis. Anal. Chem. 2021, 93, 13014–13021.

    CAS  Google Scholar 

  129. Yang, Y. L.; Wang, S. F.; Lu, L. F.; Zhang, Q. S.; Yu, P.; Fan, Y.; Zhang, F. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew. Chem., Int. Ed. 2020, 59, 18380–18385.

    CAS  Google Scholar 

  130. Tang, Y. F.; Li, Y. Y.; Lu, X. M.; Hu, X. M.; Zhao, H.; Hu, W. B.; Lu, F.; Fan, Q. L.; Huang, W. Bio-erasable intermolecular donor-acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv. Funct. Mater. 2019, 29, 1807376.

    Google Scholar 

  131. Meng, L. C.; Wang, Q. L.; Wang, L.; Zhao, Z.; Xin, G. Z.; Zheng, Z. G.; Zhou, P.; Li, P.; Jiang, Y.; Li, H. J. miR122-controlled all-in-one nanoplatform for in situ theranostic of drug-induced liver injury by visualization imaging guided on-demand drug release. Mater. Today Bio 2021, 12, 100157.

    CAS  Google Scholar 

  132. Shi, Y. Y.; Liu, Y.; Wang, S. J.; Huang, J. X.; Luo, Z. Y.; Jiang, M. S.; Lu, Y. C.; Lin, Q.; Liu, H. H.; Cheng, N. T. et al. Endoplasmic reticulum-targeted inhibition of CYP2E1 with vitamin E nanoemulsions alleviates hepatocyte oxidative stress and reverses alcoholic liver disease. Biomaterials 2022, 288, 121720.

    CAS  Google Scholar 

  133. Ullah, A.; Chen, G.; Zhang, Y. B.; Hussain, A.; Shafiq, M.; Raza, F.; Liu, D. J.; Wang, K. K.; Cao, J.; Qi, X. Y. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis. Biomater. Sci. 2022, 10, 2650–2664.

    CAS  Google Scholar 

  134. Tang, Y. F.; Li, Y. Y.; Wang, Z.; Pei, F.; Hu, X. M.; Ji, Y.; Li, X.; Zhao, H.; Hu, W. B.; Lu, X. M. et al. Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity. Chem. Commun. 2019, 55, 27–30.

    CAS  Google Scholar 

  135. Sun, L. H.; Ouyang, J.; Ma, Y. Q.; Zeng, Z.; Zeng, C.; Zeng, F.; Wu, S. Z. An activatable probe with aggregation-induced emission for detecting and imaging herbal medicine induced liver injury with optoacoustic imaging and NIR-II fluorescence imaging. Adv. Healthc. Mater. 2021, 10, 2100867.

    CAS  Google Scholar 

  136. Qiu, Q.; Chang, T. H.; Wu, Y. Y.; Qu, C. R.; Chen, H.; Cheng, Z. Liver injury long-term monitoring and fluorescent image-guided tumor surgery using self-assembly amphiphilic donor-acceptor NIR-II dyes. Biosens. Bioelectron. 2022, 212, 114371.

    CAS  Google Scholar 

  137. Liu, J. H.; Zhang, W.; Zhou, C. M.; Li, M. M.; Wang, X.; Zhang, W.; Liu, Z. Z.; Wu, L. L.; James, T. D.; Li, P. et al. Precision navigation of hepatic ischemia-reperfusion injury guided by lysosomal viscosity-activatable NIR-II fluorescence. J. Am. Chem. Soc. 2022, 144, 13586–13599.

    CAS  Google Scholar 

  138. Chen, J. J.; Chen, L. Q.; Wu, Y. L.; Fang, Y. C.; Zeng, F.; Wu, S. Z.; Zhao, Y. L. A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging. Nat. Commun. 2021, 12, 6870.

    CAS  Google Scholar 

  139. Gao, D. Y.; Li, Y. X.; Wu, Y. Y.; Liu, Y.; Hu, D. H.; Liang, S. M.; Liao, J. L.; Pan, M.; Zhang, P. F.; Li, K. et al. Albumin-consolidated AIEgens for boosting glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl. Mater. Interfaces, in press, https://doi.org/10.1021/acsami.1c22700.

  140. Cheng, Y.; Cheng, A. R.; Jia, Y. L.; Yang, L.; Ning, Y.; Xu, L.; Zhong, Y. Z.; Zhuang, Z. R.; Guan, J. T.; Zhang, X. L. et al. pH-responsive multifunctional theranostic rapamycin-loaded nanoparticles for imaging and treatment of acute ischemic stroke. ACS Appl. Mater. Interfaces 2021, 13, 56909–56922.

    CAS  Google Scholar 

  141. Ai, Y. J.; He, M. Q.; Wan, C. X.; Luo, H.; Xin, H. B.; Wang, Y. T.; Liang, Q. L. Nanoplatform-based reactive oxygen species scavengers for therapy of ischemia-reperfusion injury. Adv. Therap., in press, https://doi.org/10.1002/adtp.202200066.

  142. Ren, F.; Jiang, Z. L.; Han, M. X.; Zhang, H.; Yun, B. F.; Zhu, H. Q.; Li, Z. NIR-II fluorescence imaging for cerebrovascular diseases. View 2021, 2, 20200128.

    Google Scholar 

  143. Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872–6879.

    CAS  Google Scholar 

  144. Yu, W. B.; Guo, B.; Zhang, H. Q.; Zhou, J.; Yu, X. M.; Zhu, L.; Xue, D. W.; Liu, W.; Sun, X. H.; Qian, J. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots. Sci. Bull. 2019, 64, 410–416.

    CAS  Google Scholar 

  145. Li, Y. Y.; Fan, X. X.; Li, Y. R.; Liu, S. J.; Chuah, C.; Tang, Y. H.; Kwok, R. T. K.; Lam, J. W. Y.; Lu, X. F.; Qian, J. et al. Molecular crystal engineering of organic chromophores for NIR-II fluorescence quantification of cerebrovascular function. ACS Nano 2022, 16, 3323–3331.

    CAS  Google Scholar 

  146. Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

    CAS  Google Scholar 

  147. Zhu, S. J.; Tian, R.; Antaris, A. L.; Chen, X. Y.; Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 2019, 31, 1900321.

    Google Scholar 

  148. Yang, Q. L.; Hu, Z. B.; Zhu, S. J.; Ma, R.; Ma, H. L.; Ma, Z. R.; Wan, H.; Zhu, T.; Jiang, Z. Y.; Liu, W. Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 2018, 140, 1715–1724.

    CAS  Google Scholar 

  149. Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242.

    CAS  Google Scholar 

  150. Zeng, W. W.; Wu, X. X.; Chen, T.; Sun, S. J.; Shi, Z. F.; Liu, J.; Ji, X. Y.; Zeng, X. W.; Guan, J.; Mei, L. et al. Renal-clearable ultrasmall polypyrrole nanoparticles with size-regulated property for second near-infrared light-mediated photothermal therapy. Adv. Funct. Mater. 2021, 31, 2008362.

    CAS  Google Scholar 

  151. Sun, Z. Q.; Huang, H. Y.; Zhang, R.; Yang, X. H.; Yang, H. C.; Li, C. Y.; Zhang, Y. J.; Wang, Q. B. Activatable rare earth near-infrared-II fluorescence ratiometric nanoprobes. Nano Lett. 2021, 21, 6576–6583.

    CAS  Google Scholar 

  152. Zhao, M. Y.; Li, B. H.; Zhang, H. X.; Zhang, F. Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem. Sci. 2021, 12, 3448–3459.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province (Nos. 20212BAB214005 and 20212ACB214002) and the Research startup fund of East China Jiaotong University (No. 465).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Yang or Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Sun, F., Zhu, C. et al. Repurposing organic semiconducting nanomaterials to accelerate clinical translation of NIR-II fluorescence imaging. Nano Res. 16, 5140–5154 (2023). https://doi.org/10.1007/s12274-022-5145-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5145-1

Keywords

Navigation