Skip to main content
Log in

Multilayered organic semiconductors for high performance optoelectronic stimulation of cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The efficiency of devices for bioelectronic applications, including cell and tissue stimulation, is heavily dependent on the scale and the performance level. With miniaturization of stimulation electrodes, achieving a sufficiently high current pulse to elicit action potentials becomes an issue. Herein we report on our approach of vertically stacking organic p-n junctions to create highly-efficient multilayered organic semiconductor (MOS) photostimulation device. A tandem arrangement substantially increases the photovoltage and charge density without sacrificing lateral area, while not exceeding 200–500 nm of thickness. These devices generate 4 times higher voltages and at least double the charge densities over single p-n junction devices, which allow using lower light intensities for stimulation. MOS devices show an outstanding stability in the electrolyte that is extremely important for forthcoming in vivo experiments. Finally, we have validated MOS devices performance by photostimulating fibroblasts and neuroblasts, and found that using tandem devices leads to more effective action potential generation. As a result, we obtained up to 4 times enhanced effect in cell growth density using 3 p-n layered devices. These results corroborate the conclusion that MOS technology not only can achieve parity with state-of-the-art silicon devices, but also can exceed them in miniaturization and performance for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rand, D.; Jakešová, M.; Lubin, G.; Vėbraitė, I.; David-Pur, M.; Đerek, V.; Cramer, T.; Sariciftci, N. S.; Hanein, Y.; Głowacki, E. D. Direct electrical neurostimulation with organic pigment photocapacitors. Adv. Mater. 2018, 30, 1707292.

    Google Scholar 

  2. Kotov, N. A.; Winter, J. O.; Clements, I. P.; Jan, E.; Timko, B. P.; Campidelli, S.; Pathak, S.; Mazzatenta, A.; Lieber, C. M.; Prato, M. et al. Nanomaterials for neural interfaces. Adv. Mater. 2009, 21, 3970–4004.

    CAS  Google Scholar 

  3. Pappas, T. C.; Wickramanyake, W. M. S.; Jan, E.; Motamedi, M.; Brodwick, M.; Kotov, N. A. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett. 2007, 7, 513–519.

    CAS  Google Scholar 

  4. Santoro, F.; Zhao, W. T.; Joubert, L. M.; Duan, L. T.; Schnitker, J.; Van De Burgt, Y.; Lou, H. Y.; Liu, B. F.; Salleo, A.; Cui, L. F. et al. Revealing the cell—material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 2017, 11, 8320–8328.

    CAS  Google Scholar 

  5. Ferro, M. D.; Melosh, N. A. Electronic and ionic materials for neurointerfaces. Adv. Funct. Mater. 2017, 28, 1704335.

    Google Scholar 

  6. Markov, A.; Maybeck, V.; Wolf, N.; Mayer, D.; Offenhäusser, A.; Wördenweber, R. Engineering of neuron growth and enhancing cell-chip communication via mixed SAMs. ACS Appl. Mater. Interfaces 2018, 10, 18507–18514.

    CAS  Google Scholar 

  7. Gautam, V.; Rand, D.; Hanein, Y.; Narayan, K. S. A polymer optoelectronic interface provides visual cues to a blind retina. Adv. Mater. 2014, 26, 1751–1756.

    CAS  Google Scholar 

  8. Butterwick, A.; Huie, P.; Jones, B. W.; Marc, R. E.; Marmor, M.; Palanker, D. Effect of shape and coating of a subretinal prosthesis on its integration with the retina. Exp. Eye Res. 2009, 88, 22–29.

    CAS  Google Scholar 

  9. Maya-Vetencourt, J. F.; Ghezzi, D.; Antognazza, M. R.; Colombo, E.; Mete, M.; Feyen, P.; Desii, A.; Buschiazzo, A.; Di Paolo, M.; Di Marco, S. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 2017, 16, 681–689.

    CAS  Google Scholar 

  10. Ghezzi, D.; Antognazza, M. R.; Maccarone, R.; Bellani, S.; Lanzarini, E.; Martino, N.; Mete, M.; Pertile, G.; Bisti, S.; Lanzani, G. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 2013, 7, 400–406.

    CAS  Google Scholar 

  11. Mathieson, K.; Loudin, J.; Goetz, G.; Huie, P.; Wang, L. L.; Kamins, T. I.; Galambos, L.; Smith, R.; Harris, J. S.; Sher, A. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 2012, 6, 391–397.

    CAS  Google Scholar 

  12. Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G. G.; Buzsáki, G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18, 310–315.

    CAS  Google Scholar 

  13. Ahmadraji, T.; Gonzalez-Macia, L.; Ritvonen, T.; Willert, A.; Ylimaula, S.; Donaghy, D.; Tuurala, S.; Suhonen, M.; Smart, D.; Morrin, A. et al. Biomedical diagnostics enabled by integrated organic and printed electronics. Anal. Chem. 2017, 89, 7447–7454.

    CAS  Google Scholar 

  14. Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017, 1, 0008.

    CAS  Google Scholar 

  15. Chuang, A. T.; Margo, C. E.; Greenberg, P. B. Retinal implants: A systematic review. Br. J. Ophthalmol. 2014, 98, 852–856.

    Google Scholar 

  16. Prodanov, D.; Delbeke, J. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front. Neurosci. 2016, 10, 11.

    Google Scholar 

  17. Bareket, L.; Waiskopf, N.; Rand, D.; Lubin, G.; David-Pur, M.; Ben-Dov, J.; Roy, S.; Eleftheriou, C.; Sernagor, E.; Cheshnovsky, O. et al. Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 2014, 14, 6685–6692.

    CAS  Google Scholar 

  18. Zangoli, M.; Di Maria, F.; Zucchetti, E.; Bossio, C.; Antognazza, M. R.; Lanzani, G.; Mazzaro, R.; Corticelli, F.; Baroncini, M.; Barbarella, G. Engineering thiophene-based nanoparticles to induce phototransduction in live cells under illumination. Nanoscale 2017, 9, 9202–9209.

    CAS  Google Scholar 

  19. Sytnyk, M.; Jakešová, M.; Litviňuková, M.; Mashkov, O.; Kriegner, D.; Stangl, J.; Nebesářová, J.; Fecher, F. W.; Schöfberger, W.; Sariciftci, N. S. et al. Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals. Nat. Commun. 2017, 8, 91.

    Google Scholar 

  20. Ghezzi, D.; Antognazza, M. R.; Dal Maschio, M.; Lanzarini, E.; Benfenati, F.; Lanzani, G. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2011, 2, 166.

    Google Scholar 

  21. Abdullaeva, O. S.; Schulz, M.; Balzer, F.; Parisi, J.; Lützen, A.; Dedek, K.; Schiek, M. Photoelectrical stimulation of neuronal cells by an organic semiconductor—electrolyte interface. Langmuir 2016, 32, 8533–8542.

    CAS  Google Scholar 

  22. Martino, N.; Feyen, P.; Porro, M.; Bossio, C.; Zucchetti, E.; Ghezzi, D.; Benfenati, F.; Lanzani, G.; Antognazza, M. R. Photothermal cellular stimulation in functional bio-polymer interfaces. Sci. Rep. 2015, 5, 8911.

    CAS  Google Scholar 

  23. Shapiro, M. G.; Homma, K.; Villarreal, S.; Richter, C. P.; Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 2012, 3, 736.

    Google Scholar 

  24. Jiang, Y. W.; Carvalho-De-Souza, J. L.; Wong, R. C. S.; Luo, Z. Q.; Isheim, D.; Zuo, X. B.; Nicholls, A. W.; Jung, I. W.; Yue, J. P.; Liu, D. J. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 2016, 15, 1023–1030.

    CAS  Google Scholar 

  25. Tortiglione, C.; Antognazza, M. R.; Tino, A.; Bossio, C.; Marchesano, V.; Bauduin, A.; Zangoli, M.; Morata, S. V.; Lanzani, G. Semiconducting polymers are light nanotransducers in eyeless animals. Sci. Adv. 2017, 3.

  26. Moros, M.; Lewinska, A.; Onorato, G.; Antognazza, M. R.; Di Francesca, M.; Blasio, M.; Lanzani, G.; Tino, A.; Wnuk, M.; Tortiglione, C. Light-triggered modulation of cell antioxidant defense by polymer semiconducting nanoparticles in a model organism. MRS Commun. 2018, 8, 918–925.

    CAS  Google Scholar 

  27. Parameswaran, R.; Carvalho-De-Souza, J. L.; Jiang, Y. W.; Burke, M. J.; Zimmerman, J. F.; Koehler, K.; Phillips, A. W.; Yi, J.; Adams, E. J.; Bezanilla, F. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 2018, 13, 260–266.

    CAS  Google Scholar 

  28. Griffin, M.; Iqbal, S. A.; Sebastian, A.; Colthurst, J.; Bayat, A. Degenerate wave and capacitive coupling increase human msc invasion and proliferation while reducing cytotoxicity in an in vitro wound healing model. PLoS One 2011, 6, e23404.

    CAS  Google Scholar 

  29. Matsuki, N.; Takeda, M.; Ishikawa, T.; Kinjo, A.; Hayasaka, T.; Imai, Y.; Yamaguchi, T. Activation of caspases and apoptosis in response to low-voltage electric pulses. Oncol. Rep. 2010, 23, 1425–1433.

    Google Scholar 

  30. O’Hearn, S. F.; Ackerman, B. J.; Mower, M. M. Paced monophasic and biphasic waveforms alter transmembrane potentials and metabolism of human fibroblasts. Biochem. Biophys. Rep. 2016, 8, 249–253.

    Google Scholar 

  31. Horn, R.; Patlak, J. Single channel currents from excised patches of muscle membrane. Proc. Natl. Acad. Sci. USA 1980, 77, 6930–6934.

    CAS  Google Scholar 

  32. Chu, X. P.; Papasian, C. J.; Wang, J. Q.; Xiong, Z. G. Modulation of acid-sensing ion channels: Molecular mechanisms and therapeutic potential. Int. J. Physiol. Pathophysiol. Pharmacol. 2011, 3, 288–309.

    CAS  Google Scholar 

  33. Santoni, G.; Morelli, M. B.; Amantini, C.; Santoni, M.; Nabissi, M.; Marinelli, O.; Santoni, A. “Immuno-transient receptor potential ion channels”: The role in monocyte- and macrophage-mediated inflammatory responses. Front. Immunol. 2018, 9, 1273.

    Google Scholar 

  34. McCaig, C. D.; Rajnicek, A. M.; Song, B.; Zhao, M. Controlling cell behavior electrically: Current views and future potential. Physiol. Rev. 2005, 85, 943–978.

    Google Scholar 

  35. Khitrin, A. K.; Khitrin, K. A.; Model, M. A. A model for membrane potential and intracellular ion distribution. Chem. Phys. Lipids 2014, 184, 76–81.

    CAS  Google Scholar 

  36. Ye, H.; Steiger, A. Neuron matters: Electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field. J. Neuroeng. Rehabil. 2015, 12, 65.

    Google Scholar 

  37. Gerencser, A. A.; Chinopoulos, C.; Birket, M. J.; Jastroch, M.; Vitelli, C.; Nicholls, D. G.; Brand, M. D. Quantitative measurement of mitochondrial membrane potential in cultured cells: Calcium-induced de- and hyperpolarization of neuronal mitochondria. J. Physiol. 2012, 590, 2845–2871.

    CAS  Google Scholar 

  38. Wali, Q.; Elumalai, N. K.; Iqbal, Y.; Uddin, A.; Jose, R. Tandem perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 84, 89–110.

    CAS  Google Scholar 

  39. Ameri, T.; Li, N.; Brabec, C. J. Highly efficient organic tandem solar cells: A follow up review. Energy Environ. Sci. 2013, 6, 2390–2413.

    CAS  Google Scholar 

  40. Hiramoto, M.; Fujiwara, H.; Yokoyama, M. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 1991, 58, 1062–1064.

    CAS  Google Scholar 

  41. Hunger, K. Toxicology and toxicological testing of colorants. Rev. Prog. Color. Relat. Top. 2005, 35, 76–89.

    CAS  Google Scholar 

  42. Warczak, M.; Gryszel, M.; Jakešová, M.; Đerek, V.; Głowacki, E. D. Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide. Chem. Commun. 2018, 54, 1960–1963.

    CAS  Google Scholar 

  43. Jacques, S. L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37–R61.

    Google Scholar 

  44. Gerasimenko, A. Y.; Kitsyuk, E.; Kurilova, U. E.; Suetina, I. A.; Russu, L.; Mezentseva, M. V.; Markov, A.; Narovlyansky, A. N.; Kravchenko, S.; Selishchev, S. V. et al. Interfaces based on laser-structured arrays of carbon nanotubes with albumin for electrical stimulation of heart cell growth. Polymers (Basel) 2022, 14, 1866.

    CAS  Google Scholar 

  45. Muraoka, R.; Nakano, K.; Kurihara, S.; Yamada, K.; Kawakami, T. Immunohistochemical expression of heat shock proteins in the mouse periodontal tissues due to orthodontic mechanical stress. Eur. J. Med. Res. 2010, 15, 475–482.

    CAS  Google Scholar 

  46. Ravikanth, M.; Soujanya, P.; Manjunath, K.; Saraswathi, T.; Ramachandran, C. Heterogenecity of fibroblasts. J. Oral Maxillofac. Pathol. 2011, 15, 247–250.

    Google Scholar 

  47. Hirt, M. N.; Boeddinghaus, J.; Mitchell, A.; Schaaf, S.; Börnchen, C.; Müller, C.; Schulz, H.; Hubner, N.; Stenzig, J.; Stoehr, A. et al. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J. Mol. Cell. Cardiol. 2014, 74, 151–161.

    CAS  Google Scholar 

  48. Pires, F.; Ferreira, Q.; Rodrigues, C. A. V.; Morgado, J.; Ferreira, F. C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 1158–1168.

    CAS  Google Scholar 

  49. Głowacki, E. D.; Romanazzi, G.; Yumusak, C.; Coskun, H.; Monkowius, U.; Voss, G.; Burian, M.; Lechner, R. T.; Demitri, N.; Redhammer, G. J. et al. Epindolidiones-versatile and stable hydrogen-bonded pigments for organic field-effect transistors and light-emitting diodes. Adv. Funct. Mater. 2015, 25, 776–787.

    Google Scholar 

Download references

Acknowledgements

Research at Sechenov University was funded by the Ministry of Science and Higher Education of the Russian Federation (No. 075-15-2021-596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Markov.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A., Gerasimenko, A., Boromangnaeva, AK. et al. Multilayered organic semiconductors for high performance optoelectronic stimulation of cells. Nano Res. 16, 5809–5816 (2023). https://doi.org/10.1007/s12274-022-5130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5130-8

Keywords

Navigation