Skip to main content
Log in

Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomically dispersed catalysts have been widely studied due to their high catalytic activity and atom utilization. Single-atom catalysts have achieved breakthrough progress in the degradation of emerging organic contaminants (EOCs) by activating peroxymonosulfate (PMS). However, the construction of atomically dispersed catalysts with diatomic/multiatomic metal active sites by activating PMS to degrade pollutants is still seldom reported, despite the unique merits of atom-pair in synergistic electronic modulation and breaking stubborn restriction of scaling relations on catalytic activity. We have synthesized Fe1−N−C, Fe2−N−C, and Fe3−N−C catalysts with monoatomic iron, diatomic iron, and triatomic iron active center, respectively. The results show that the catalytic degradation activity of Fe2−N−C is twice that of Fe1−N−C and Fe3−N−C due to its unique Fe2N6 coordination structure, which fulfilled the complete degradation of rhodamine B (RhB), bisphenol A (BPA), and 2,4-dichlorophenol (2,4-DP) within 2 min. Electron paramagnetic resonance (EPR) and radical quenching experiments confirmed that the reaction was a nonradical reaction on the catalyst surface. And singlet oxygen and Fe(IV) are the key active species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ribeiro, J. P.; Nunes, M. I. Recent trends and developments in Fenton processes for industrial wastewater treatment—A critical review. Environ. Res. 2021, 197, 110957.

    Article  CAS  Google Scholar 

  2. Wang, B.; Song, Z. J.; Sun, L. S. A review: Comparison of multi-air-pollutant removal by advanced oxidation processes—Industrial implementation for catalytic oxidation processes. Chem. Eng. J. 2021, 409, 128136.

    Article  CAS  Google Scholar 

  3. Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131.

    Article  CAS  Google Scholar 

  4. Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

    Article  CAS  Google Scholar 

  5. Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117.

    Article  CAS  Google Scholar 

  6. Lee, J.; Von Gunten, U.; Kim, J. H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.

    Article  CAS  Google Scholar 

  7. Wang, J. L.; Tang, J. T. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. Chemosphere 2021, 276, 130177.

    Article  CAS  Google Scholar 

  8. Wang, Y. X.; Duan, X. G.; Xie, Y. B.; Sun, H. Q.; Wang, S. B. Nanocarbon-based catalytic ozonation for aqueous oxidation: Engineering defects for active sites and tunable reaction pathways. ACS Catal. 2020, 10, 13383–13414.

    Article  CAS  Google Scholar 

  9. Wu, H.; Xu, X. Y.; Shi, L.; Yin, Y.; Zhang, L. C.; Wu, Z. T.; Duan, X. G.; Wang, S. B.; Sun, H. Q. Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Res. 2019, 167, 115110.

    Article  CAS  Google Scholar 

  10. Duan, X. G.; Ao, Z. M.; Zhou, L.; Sun, H. Q.; Wang, G. X.; Wang, S. B. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B Environ. 2016, 188, 98–105.

    Article  CAS  Google Scholar 

  11. Gao, Y. W.; Chen, Z. H.; Zhu, Y.; Li, T.; Hu, C. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms. Environ. Sci. Technol. 2020, 54, 1232–1241.

    Article  CAS  Google Scholar 

  12. Duan, X. G.; O’Donnell, K.; Sun, H. Q.; Wang, Y. X.; Wang, S. B. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 2015, 11, 3036–3044.

    Article  CAS  Google Scholar 

  13. Wu, L. Y.; Sun, Z. Q.; Zhen, Y. F.; Zhu, S. S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe−Co LDH/peroxymonosulfate system. Environ. Sci. Technol. 2021, 55, 15400–15411.

    Article  CAS  Google Scholar 

  14. Oh, W. D.; Dong, Z. L.; Lim, T. T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201.

    Article  CAS  Google Scholar 

  15. Wang, J. L.; Wang, S. Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517.

    Article  CAS  Google Scholar 

  16. Gao, Y. W.; Zhu, Y.; Chen, Z. H.; Zeng, Q. Y.; Hu, C. Insights into the difference in metal-free activation of peroxymonosulfate and peroxydisulfate. Chem. Eng. J. 2020, 394, 123936.

    Article  CAS  Google Scholar 

  17. Zhang, H. X.; Li, C. W.; Lyu, L.; Hu, C. Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification. Appl. Catal. B Environ. 2020, 270, 118874.

    Article  CAS  Google Scholar 

  18. Li, D. G.; Duan, X. G.; Sun, H. Q.; Kang, J.; Zhang, H. Y.; Tade, M. O.; Wang, S. B. Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon 2017, 115, 649–658.

    Article  CAS  Google Scholar 

  19. Chen, F.; Liu, L. L.; Chen, J. J.; Li, W. W.; Chen, Y. P.; Zhang, Y. J.; Wu, J. H.; Mei, S. C.; Yang, Q.; Yu, H. Q. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Res. 2021, 191, 116799.

    Article  CAS  Google Scholar 

  20. Duan, X. G.; Sun, H. Q.; Wang, S. B. Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 2018, 51, 678–687.

    Article  CAS  Google Scholar 

  21. Hou, J. F.; He, X. D.; Zhang, S. Q.; Yu, J. L.; Feng, M. B.; Li, X. D. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci. Total Environ. 2021, 770, 145311.

    Article  CAS  Google Scholar 

  22. Liu, L. D.; Liu, Q.; Wang, Y.; Huang, J.; Wang, W. J.; Duan, L.; Yang, X.; Yu, X. Y.; Han, X.; Liu, N. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B Environ. 2019, 254, 166–173.

    Article  CAS  Google Scholar 

  23. Guo, Z.; Xie, Y. B.; Xiao, J. D.; Zhao, Z. J.; Wang, Y. X.; Xu, Z. M.; Zhang, Y.; Yin, L. C.; Cao, H. B.; Gong, J. L. Single-atom Mn−N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 2019, 141, 12005–12010.

    Article  CAS  Google Scholar 

  24. Yin, Y.; Shi, L.; Li, W. L.; Li, X. M.; Wu, H.; Ao, Z. M.; Tian, W. J.; Liu, S. M.; Wang, S. B.; Sun, H. Q. Boosting fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400.

    Article  CAS  Google Scholar 

  25. Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

    Article  CAS  Google Scholar 

  26. Miao, J.; Zhu, Y.; Lang, J. Y.; Zhang, J. Z.; Cheng, S. X.; Zhou, B. X.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Spin-state-dependent peroxymonosulfate activation of single-atom M−N moieties via a radical-free pathway. ACS Catal. 2021, 11, 9569–9577.

    Article  CAS  Google Scholar 

  27. Qi, Y. F.; Li, J.; Zhang, Y. Q.; Cao, Q.; Si, Y. M.; Wu, Z. R.; Akram, M.; Xu, X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Appl. Catal. B Environ. 2021, 286, 119910.

    Article  CAS  Google Scholar 

  28. Qian, K.; Chen, H.; Li, W. L.; Ao, Z. M.; Wu, Y. N.; Guan, X. H. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043.

    Article  CAS  Google Scholar 

  29. Jiang, N.; Xu, H. D.; Wang, L. H.; Jiang, J.; Zhang, T. Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant. Environ. Sci. Technol. 2020, 54, 14057–14065.

    Article  CAS  Google Scholar 

  30. Yang, L. X.; Yang, H. Q.; Yin, S. Y.; Wang, X. Y.; Xu, M. W.; Lu, G. L.; Liu, Z. N.; Sun, H. Fe single-atom catalyst for efficient and rapid fenton-like degradation of organics and disinfection against bacteria. Small 2022, 18, 2104941.

    Article  CAS  Google Scholar 

  31. Dong, H. Y.; Li, Y.; Wang, S. C.; Liu, W. F.; Zhou, G. M.; Xie, Y. F.; Guan, X. H. Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process. Environ. Sci. Technol. Lett. 2020, 7, 219–224.

    Article  CAS  Google Scholar 

  32. Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni−Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.

    Article  CAS  Google Scholar 

  33. Duan, X. G.; Sun, H. Q.; Wang, Y. X.; Kang, J.; Wang, S. B. N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catal. 2015, 5, 553–559.

    Article  CAS  Google Scholar 

  34. Ye, W.; Chen, S. M.; Lin, Y.; Yang, L.; Chen, S. J.; Zheng, X. S.; Qi, Z. M.; Wang, C. M.; Long, R.; Chen, M. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.

    Article  CAS  Google Scholar 

  35. Jiao, L.; Ye, W.; Kang, Y. K.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Song, W. Y.; Xiong, Y. J.; Zhu, C. Z. Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. Nano Res. 2022, 15, 959–964.

    Article  CAS  Google Scholar 

  36. Yao, Y. J.; Chen, H.; Lian, C.; Wei, F. Y.; Zhang, D. W.; Wu, G. D.; Chen, B. J.; Wang, S. B. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 2016, 314, 129–139.

    Article  CAS  Google Scholar 

  37. Li, H. C.; Shan, C.; Pan, B. C. Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species. Environ. Sci. Technol. 2018, 52, 2197–2205.

    Article  CAS  Google Scholar 

  38. Li, Y.; Yang, T.; Qiu, S. H.; Lin, W. Q.; Yan, J. T.; Fan, S. S.; Zhou, Q. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chem. Eng. J. 2020, 389, 124382.

    Article  CAS  Google Scholar 

  39. Peng, X. M.; Wu, J. Q.; Zhao, Z. L.; Wang, X.; Dai, H. L.; Xu, L.; Xu, G. P.; Jian, Y.; Hu, F. P. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe−Nx sites. Chem. Eng. J. 2022, 427, 130803.

    Article  CAS  Google Scholar 

  40. Wang, L. K.; Gennari, M.; Reinhard, F. G. C.; Padamati, S. K.; Philouze, C.; Flot, D.; Demeshko, S.; Browne, W. R.; Meyer, F.; De Visser, S. P. et al. O2 activation by non-heme thiolate-based dinuclear Fe complexes. Inorg. Chem. 2020, 59, 3249–3259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 22074137 and 21721003) and the Ministry of Science and Technology of China (No. 2016YFA0203203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Electronic supplementary material

12274_2022_5124_MOESM1_ESM.pdf

Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chen, J., Wu, W. et al. Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system. Nano Res. 16, 4678–4684 (2023). https://doi.org/10.1007/s12274-022-5124-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5124-6

Keywords

Navigation