Skip to main content
Log in

Carbonitride MXene Ti3CN(OH)x@MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Renewable energy powered electrocatalytic water splitting is a promising strategy for hydrogen generation, and the design and development of high-efficiency and earth-abundant electrocatalysts for hydrogen evolution reaction (HER) are highly desirable. Herein, MoS2 nanoflowers decorated two-dimensional carbonitride-based MXene Ti3CN(OH)x hybrids have been constructed by etching and post-hydrothermal methods. The electrochemical performance of the as-obtained Ti3CN(OH)x@MoS2 hybrids having a quasi core—shell structure is fascinating: An overpotential of 120 mV and a Tafel slope of 64 mV·dec−1 can be delivered at a current density of 10 mA·cm−2. And after 3,000 cyclic voltammetry cycles, it can be seen that there is no apparent attenuation. Both the experimental results and density functional theory (DFT) calculations indicate that the synergetic effects between Ti3CN(OH)x and MoS2 are responsible for the robust electrochemical HER performance. The electrons of −OH group in Ti3CN(OH)x are transferred to MoS2, making the adsorption energy of the composite for H almost vanish. The metallic Ti3CN(OH)x is also beneficial to the fast charge transfer kinetics. The construction of MXene-based hybrids with optimal electronic structure and unique morphology tailored to the applications can be further used in other promising energy storage and conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  2. Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

    CAS  Google Scholar 

  3. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal—support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    CAS  Google Scholar 

  4. Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

    CAS  Google Scholar 

  5. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    CAS  Google Scholar 

  6. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  7. Li, R. Z.; Wang, D. S. Understanding the structure—performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  8. Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

    CAS  Google Scholar 

  9. Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

    CAS  Google Scholar 

  10. Jiang, J. Z.; Ouyang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.

    CAS  Google Scholar 

  11. Bai, S. S.; Yang, M. Q.; Jiang, J. Z.; He, X. M.; Zou, J.; Xiong, Z. G.; Liao, G. D.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5, 78.

    CAS  Google Scholar 

  12. Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

    CAS  Google Scholar 

  13. Jiang, J. Z.; Zou, Y. L.; Arramel, Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

    CAS  Google Scholar 

  14. Zeng, Z. L.; Chen, X. Z.; Weng, K. Y.; Wu, Y.; Zhang, P.; Jiang, J. Z.; Li, N. Computational screening study of double transition metal carbonitrides M’2M”CNO2-MXene as catalysts for hydrogen evolution reaction. npj Comput. Mater. 2021, 7, 80.

    CAS  Google Scholar 

  15. Ding, B.; Ong, W. J.; Jiang, J. Z.; Chen, X. Z.; Li, N. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Appl. Surf. Sci. 2020, 500, 143987.

    CAS  Google Scholar 

  16. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    CAS  Google Scholar 

  17. Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

    CAS  Google Scholar 

  18. Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core—shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

    CAS  Google Scholar 

  19. Jiang, Y. N.; Sun, T.; Xie, X.; Jiang, W.; Li, J.; Tian, B. B.; Su, C. L. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019, 12, 1368–1373.

    CAS  Google Scholar 

  20. Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano 2020, 14, 16140–16155.

    CAS  Google Scholar 

  21. Du, C. F.; Dinh, K. N.; Liang, Q. H.; Zheng, Y.; Luo, Y. B.; Zhang, J. L.; Yan, Q. Y. Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 2018, 8, 1801127.

    Google Scholar 

  22. Wang, H.; Lee, J. M. Recent advances in structural engineering of MXene electrocatalysts. J. Mater. Chem. A 2020, 8, 10604–10624.

    CAS  Google Scholar 

  23. Wang, J. Y.; He, P. L.; Shen, Y. L.; Dai, L. X.; Li, Z.; Wu, Y.; An, C. H. FeNi nanoparticles on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 2021, 14, 3474–3481.

    CAS  Google Scholar 

  24. Yan, L.; Zhang, B. Rose-like, ruthenium-modified cobalt nitride nanoflowers grown in situ on an MXene matrix for efficient and stable water electrolysis. J. Mater. Chem. A 2021, 9, 20758–20765.

    CAS  Google Scholar 

  25. Li, S. X.; Que, X. Y.; Chen, X. B.; Lin, T. R.; Sheng, L.; Peng, J.; Li, J. Q.; Zhai, M. L. One-step synthesis of modified Ti3C2 MXene-supported amorphous molybdenum sulfide electrocatalysts by a facile gamma radiation strategy for efficient hydrogen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 10882–10891.

    CAS  Google Scholar 

  26. Kuang, P. Y.; He, M.; Zhu, B. C.; Yu, J. G.; Fan, K.; Jaroniec, M. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. J. Catal. 2019, 375, 8–20.

    CAS  Google Scholar 

  27. Yan, L.; Zhang, B.; Wu, S. Y.; Yu, J. L. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. J. Mater. Chem. A 2020, 8, 14234–14242.

    CAS  Google Scholar 

  28. Zong, H.; Qi, R. J.; Yu, K.; Zhu, Z. Q. Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim. Acta 2021, 393, 139068.

    CAS  Google Scholar 

  29. Wang, H.; Lin, Y. P.; Liu, S. Y.; Li, J. M.; Bu, L. M.; Chen, J. M.; Xiao, X.; Choi, J. H.; Gao, L. J.; Lee, J. M. Confined growth of pyridinic N-Mo2C sites on MXenes for hydrogen evolution. J. Mater. Chem. A 2020, 8, 7109–7116.

    CAS  Google Scholar 

  30. Shen, B. F.; Huang, H. J.; Jiang, Y.; Xue, Y.; He, H. Y. 3D interweaving MXene-graphene network-confined Ni-Fe layered double hydroxide nanosheets for enhanced hydrogen evolution. Electrochim. Acta 2022, 407, 139913.

    CAS  Google Scholar 

  31. Deng, L. Q.; Chang, B.; Shi, D.; Yao, X. G.; Shao, Y. L.; Shen, J. X.; Zhang, B. G.; Wu, Y. Z.; Hao, X. P. MXene decorated by phosphorus-doped TiO2 for photo-enhanced electrocatalytic hydrogen evolution reaction. Renew. Energy 2021, 170, 858–865.

    CAS  Google Scholar 

  32. Shinde, P. V.; Mane, P.; Chakraborty, B.; Rout, C. S. Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: Experiments and theories. J. Colloid Interface Sci. 2021, 602, 232–241.

    CAS  Google Scholar 

  33. Liu, D.; Lv, Z. P.; Dang, J.; Ma, W. S.; Jian, K. L.; Wang, M.; Huang, D. J.; Tian, W. Q. Nitrogen-doped MoS2/Ti3C2Tx heterostructures as ultra-efficient alkaline HER electrocatalysts. Inorg. Chem. 2021, 60, 9932–9940.

    CAS  Google Scholar 

  34. Huang, H. J.; Xue, Y.; Xie, Y. S.; Yang, Y.; Yang, L.; He, H. Y.; Jiang, Q. G.; Ying, G. B. MoS2 quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts. Inorg. Chem. Front. 2022, 9, 1171–1178.

    CAS  Google Scholar 

  35. Lin, H.; Chen, L. S.; Lu, X. Y.; Yao, H. L.; Chen, Y.; Shi, J. L. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2019, 62, 662–670.

    CAS  Google Scholar 

  36. Zheng, X.; Wang, Z. L.; Li, J. J.; Wei, L. M. Binder-free S@Ti3C2Tx sandwich structure film as a high-capacity cathode for a stable aluminum-sulfur battery. Sci. China Mater. 2022, 65, 1463–1475.

    CAS  Google Scholar 

  37. Xu, H. Y.; Zheng, R. X.; Du, D. Y.; Ren, L. F.; Li, R. J.; Wen, X. J.; Zhao, C.; Zeng, T.; Zhou, B.; Shu, C. Z. Cationic vanadium vacancy-enriched V2−xO5 on V2C MXene as superior bifunctional electrocatalysts for Li-O2 batteries. Sci. China Mater. 2022, 65, 1761–1770.

    CAS  Google Scholar 

  38. He, F. Y.; Tang, C.; Zhu, G. J.; Liu, Y. D.; Du, A. J.; Zhang, Q. B.; Wu, M. H.; Zhang, H. J. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci. China Chem. 2021, 64, 964–973.

    CAS  Google Scholar 

  39. Cao, P. F.; Peng, J.; Li, J. Q.; Zhai, M. L. Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction. J. Power Sources 2017, 347, 210–219.

    CAS  Google Scholar 

  40. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    CAS  Google Scholar 

  41. Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 2020, 30, 0190302.

    CAS  Google Scholar 

  42. Zhang, J. P.; Li, Y. X.; Xu, C. Y.; Li, J.; Yang, L. Y.; Yin, S. G. 2D/2D/1D structure of a self-supporting electrocatalyst for efficient hydrogen evolution. ACS Appl. Energy Mater. 2022, 5, 1710–1719.

    CAS  Google Scholar 

  43. Wang, H. Q.; Wang, J. W.; Wang, X. Z.; Gao, X. H.; Zhuang, G. C.; Yang, J. B.; Ren, H. Dielectric properties and energy storage performance of PVDF-based composites with MoS2@MXene nanofiller. Chem. Eng. J. 2022, 437, 135431.

    CAS  Google Scholar 

  44. Bai, J.; Zhao, B. C.; Lin, S.; Li, K. Z.; Zhou, J. F.; Dai, J. M.; Zhu, X. B.; Sun, Y. P. Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries. Nanoscale 2020, 12, 1144–1154.

    CAS  Google Scholar 

  45. Zhang, Y.; Huang, Y.; Zhu, S. S.; Liu, Y. Y.; Zhang, X.; Wang, J. J.; Braun, A. Covalent S—O bonding enables enhanced photoelectrochemical performance of Cu2S/Fe2O3 heterojunction for water splitting. Small 2021, 17, 2100320.

    CAS  Google Scholar 

  46. Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater., 2019, 31, 1903841.

    CAS  Google Scholar 

  47. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62004143 and 21902108), the Key Research and Development (R&D) Program of Hubei Province (No. 2022BAA084), the Central Government Guided Local Science and Technology Development Special Fund Project (No. 2020ZYYD033), the Natural Science Foundation of Hubei Province (No. 2021CFB133), and the Knowledge Innovation Program of Wuhan-Shuguang Project (No. 2022010801020355).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Xiang or Jyh-Ping Hsu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Li, F., Bai, S. et al. Carbonitride MXene Ti3CN(OH)x@MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res. 16, 4656–4663 (2023). https://doi.org/10.1007/s12274-022-5112-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5112-x

Keywords

Navigation