Skip to main content
Log in

2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Because of its importance in enhancing charge separation and transfer, built-in electric field engineering has been acknowledged as an effective technique for improving photocatalytic performance. Herein, a stable p–n heterojunction of 2D/2D (2D: two-dimensional) Co3O4/ZnIn2S4 with a strong built-in electric field is precisely constructed. The Co3O4/ZnIn2S4 heterojunction exhibits a higher visible-light photocatalytic hydrogen (H2) evolution rate than the individual components, which is primarily attributed to the synergy effect of improved light absorption, abundant active sites, short charge transport distance, and high separation efficiency of photogenerated carriers. Furthermore, the photoelectrochemical studies and density functional theory (DFT) calculation results demonstrate that the enhanced interfacial charge separation and migration induced by the generated built-in electric field are the critical reasons for the boosted photocatalytic performance. This research might pave the way for the rational design and manufacturing of 2D/2D heterojunction photocatalysts with extremely efficient photocatalytic performance for solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, Y.; Guo, X. Y.; Yang, N. C.; Zhang, F. X. Heterostructured MOFs photocatalysts for water splitting to produce hydrogen. J. Energy Chem. 2021, 58, 508–522.

    CAS  Google Scholar 

  2. Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.

    CAS  Google Scholar 

  3. Shen, Z. K.; Yuan, Y. J.; Pei, L.; Yu, Z. T.; Zou, Z. G. Black phosphorus photocatalysts for photocatalytic H2 generation: A review. Chem. Eng. J. 2020, 386, 123997.

    CAS  Google Scholar 

  4. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    CAS  Google Scholar 

  5. Yang, R. J.; Mei, L.; Fan, Y. Y.; Zhang, Q. Y.; Zhu, R. S.; Amal, R.; Yin, Z. Y.; Zeng, Z. Y. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 2021, 5, 2100887.

    CAS  Google Scholar 

  6. Oh, V. B. Y.; Ng, S. F.; Ong, W. J. Shining light on ZnIn2S4 photocatalysts: Promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat 2022, 4, e12204.

    CAS  Google Scholar 

  7. Zhang, G. P.; Wu, H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ. 2022, 7, 176–204.

    CAS  Google Scholar 

  8. Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

    CAS  Google Scholar 

  9. Mao, S. M.; Shi, J. W.; Sun, G. T.; Ma, D. D.; He, C.; Pu, Z. X.; Song, K. L.; Cheng, Y. H. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs. Appl. Catal. B Environ. 2021, 282, 119550.

    CAS  Google Scholar 

  10. Peng, X. X.; Li, J. W.; Yi, L. C.; Liu, X.; Chen, J. X.; Cai, P. W.; Wen, Z. H. Ultrathin ZnIn2S4 nanosheets decorating PPy nanotubes toward simultaneous photocatalytic H2 production and 1,4-benzenedimethanol benzenedimethanol valorization. Appl. Catal. B Environ. 2022, 300, 120737.

    CAS  Google Scholar 

  11. Guo, X. L.; Peng, Y. H.; Liu, G. B.; Xie, G. W.; Guo, Y. A.; Zhang, Y.; Yu, J. Q. An efficient ZnIn2S4@CuInS2 core—shell p–n heterojunction to boost visible-light photocatalytic hydrogen evolution. J. Phys. Chem. C 2020, 124, 5934–5943.

    CAS  Google Scholar 

  12. Swain, G.; Sultana, S.; Parida, K. One-pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p–n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation. Inorg. Chem. 2019, 58, 9941–9955.

    CAS  Google Scholar 

  13. Fan, H. T.; Wu, Z.; Liu, K. C.; Liu, W. S. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 433, 134474.

    CAS  Google Scholar 

  14. Wang, L. L.; Tang, G. G.; Liu, S.; Dong, H. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p–n heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 428, 131338.

    CAS  Google Scholar 

  15. Ke, Y.; Liang, Q.; Zhao, S.; Zhang, Z. H.; Li, X. Z.; Li, Z. Y. In situ self-assembled ZIF-67/MIL-125-derived Co3O4/TiO2 p–n heterojunctions for enhanced photocatalytic CO2 reduction. Inorg. Chem. 2022, 61, 2652–2661.

    CAS  Google Scholar 

  16. Han, Y. L.; Liang, Z. B.; Dang, H. F.; Dong, X. F. Extremely high photocatalytic H2 evolution of novel Co3O4/Cd0.9Zn0.1S p–n heterojunction photocatalyst under visible light irradiation. J. Taiwan Inst. Chem. Eng. 2018, 87, 196–203.

    CAS  Google Scholar 

  17. Zhang, Y. K.; Jin, Z. L.; Yuan, H.; Wang, G. R.; Ma, B. Z. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p–n heterojunction for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 462, 213–225.

    CAS  Google Scholar 

  18. Huang, L. J.; Li, B. F.; Su, B.; Xiong, Z.; Zhang, C. J.; Hou, Y. D.; Ding, Z. X.; Wang, S. B. Fabrication of hierarchical Co3O4@CdIn2S4 p–n heterojunction photocatalysts for improved CO2 reduction with visible light. J. Mater. Chem. A 2020, 8, 7177–7183.

    CAS  Google Scholar 

  19. Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

    CAS  Google Scholar 

  20. Hou, H. L.; Zhang, X. W. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chem. Eng. J. 2020, 395, 125030.

    CAS  Google Scholar 

  21. Su, J.; Li, G. D.; Li, X. H.; Chen, J. S. 2D/2D heterojunctions for catalysis. Adv. Sci. 2019, 6, 18011702.

    Google Scholar 

  22. Ong, W. J.; Shak, K. P. Y. 2D/2D heterostructured photocatalysts: An emerging platform for artificial photosynthesis. Solar RRL 2020, 4, 2000132.

    CAS  Google Scholar 

  23. Hou, H. L.; Zeng, X. K.; Zhang, X. W. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci. China Mater. 2020, 63, 2119–2152.

    CAS  Google Scholar 

  24. Liu, X. L.; Zhang, Q. Z.; Ma, D. L. Advances in 2D/2D Z-scheme heterojunctions for photocatalytic applications. Solar RRL 2021, 5, 2000397.

    CAS  Google Scholar 

  25. Hu, J. D.; Chen, C.; Zheng, Y.; Zhang, G. P.; Guo, C. X.; Li, C. M. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly efficient photocatalytic hydrogen evolution. Small 2020, 16, 2002988.

    CAS  Google Scholar 

  26. Xi, Y. M.; Chen, W. B.; Dong, W. R.; Fan, Z. X.; Wang, K. F.; Shen, Y.; Tu, G. M.; Zhong, S. X.; Bai, S. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field. ACS Appl. Mater. Interfaces 2021, 13, 39491–39500.

    CAS  Google Scholar 

  27. Zhao, S. Q.; Li, T.; Lin, J. J.; Wu, P.; Li, Y. F.; Li, A. Q.; Chen, T. Y.; Zhao, Y.; Chen, G. X.; Yang, L. et al. Engineering Co3+-rich crystal planes on Co3O4 hexagonal nanosheets for CO and hydrocarbons oxidation with enhanced catalytic activity and water resistance. Chem. Eng. J. 2021, 420, 130448.

    CAS  Google Scholar 

  28. Wang, Y. T.; Zhu, C. Z.; Zuo, G. C.; Guo, Y.; Xiao, W.; Dai, Y. X.; Kong, J. J.; Xu, X. M.; Zhou, Y. X.; Xie, A. M. et al. 0D/2D Co3O4/TiO2 Z-scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Appl. Catal. B Environ. 2020, 278, 119298.

    CAS  Google Scholar 

  29. Huang, J. Z.; Sheng, H. Y.; Ross, R. D.; Han, J. C.; Wang, X. J.; Song, B.; Jin, S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 2021, 12, 3036.

    CAS  Google Scholar 

  30. Kang, Y.; Zhang, Y. H.; Shi, Q.; Shi, H. W.; Xue, D. F.; Shi, F. N. Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries. J. Colloid Interface Sci. 2021, 585, 705–715.

    CAS  Google Scholar 

  31. Hu, J. D.; Yang, T. Y.; Chen, J. J.; Yang, X. G.; Qu, J. F.; Cai, Y. H. Efficient solar-driven H2O2 synthesis in-situ and sustainable activation to purify water via cascade reaction on ZnIn2S4-based heterojunction. Chem. Eng. J. 2022, 430, 133039.

    CAS  Google Scholar 

  32. Miao, L. L.; Tang, X. L.; Zhao, S. Z.; Xie, X. Z.; Du, C. C.; Tang, T.; Yi, H. H. Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Res. 2022, 15, 1660–1671.

    CAS  Google Scholar 

  33. Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

    CAS  Google Scholar 

  34. Shao, Y. Y.; Hu, J. D.; Yang, T. Y.; Yang, X. G.; Qu, J. F.; Xu, Q.; Li, C. M. Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon 2022, 190, 337–347.

    CAS  Google Scholar 

  35. Han, Q. T.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y. T.; Wang, X. Y.; Shen, Q.; Xiong, Y. J.; Zhou, Y. et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Appl. Mater. Interfaces 2021, 13, 15092–15100.

    CAS  Google Scholar 

  36. Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.

    CAS  Google Scholar 

  37. Chao, Y. G.; Zhou, P.; Lai, J. P.; Zhang, W. Y.; Yang, H. W.; Lu, S. Y.; Chen, H.; Yin, K.; Li, M. G.; Tao, L. et al. Ni1−xCoxSe2-C/ZnIn2S4 hybrid nanocages with strong 2D/2D hetero-interface interaction enable efficient H2-releasing photocatalysis. Adv. Funct. Mater. 2021, 31, 2100923.

    CAS  Google Scholar 

  38. Wu, K.; Jiang, R. Q.; Zhao, Y. L.; Mao, L.; Gu, X. Q.; Cai, X. Y.; Zhu, M. S. Hierarchical NiCo2S4/ZnIn2S4 heterostructured prisms: High-efficient photocatalysts for hydrogen production under visible-light. J. Colloid Interface Sci. 2022, 619, 339–347.

    CAS  Google Scholar 

  39. Zhang, D. Q.; Mao, B. D.; Li, D.; Liu, Y. H.; Li, F. H.; Dong, W. X.; Jiang, T. Y.; Shi, W. D. 0D/2D Z-scheme heterojunctions of Zn-AgIn5S8 QDs/α-F2O3 nanosheets for efficient visible-light-driven hydrogen production. Chem. Eng. J. 2021, 417, 128275.

    CAS  Google Scholar 

  40. Yang, Y. L.; Mao, B. D.; Gong, G.; Li, D.; Liu, Y. H.; Cao, W. J.; Xing, L.; Zeng, J.; Shi, W. D.; Yuan, S. Q. In-situ growth of Zn-AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hydrogen Energy 2019, 44, 15882–15891.

    CAS  Google Scholar 

  41. Zhu, X. W.; Ji, H. Y.; Yi, J. J.; Yang, J. M.; She, X. J.; Ding, P. H.; Li, L.; Deng, J. J.; Qian, J. C.; Xu, H. et al. A specifically exposed cobalt oxide/carbon nitride 2D heterostructure for carbon dioxide photoreduction. Ind. Eng. Chem. Res. 2018, 57, 17394–17400.

    CAS  Google Scholar 

  42. Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

    CAS  Google Scholar 

  43. Luo, D.; Peng, L.; Wang, Y.; Lu, X. Y.; Yang, C.; Xu, X. S.; Huang, Y. C.; Ni, Y. H. Highly efficient photocatalytic water splitting utilizing a WO3−x/ZnIn2S4 ultrathin nanosheet Z-scheme catalyst. J. Mater. Chem. A 2021, 9, 908–914.

    CAS  Google Scholar 

  44. Zhang, J. H.; Gu, H. J.; Wang, X. L.; Zhang, H. H.; Li, L. F.; Wang, X. H.; Dai, W. L. Facile and robust construction of a 3D-hierarchical NaNbO3-nanorod/ZnIn2S4 heterojunction towards ultra-high photocatalytic H2 production. Catal. Sci. Technol. 2022, 12, 2346–2359.

    CAS  Google Scholar 

  45. Wang, T.; Tao, X. Q.; Li, X. L.; Zhang, K.; Liu, S. J.; Li, B. X. Synergistic Pd single atoms, clusters, and oxygen vacancies on TiO2 for photocatalytic hydrogen evolution coupled with selective organic oxidation. Small 2021, 17, 2006255.

    CAS  Google Scholar 

  46. Qian, J. J.; Shen, C.; Yan, J.; Xi, F. N.; Dong, X. P.; Liu, J. Y. Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst. J. Phys. Chem. C 2018, 122, 349–358.

    CAS  Google Scholar 

  47. Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. ZIF-67-derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide. Small 2019, 15, 1902291.

    Google Scholar 

  48. Tan, M. X.; Ma, Y.; Yu, C. Y.; Luan, Q. J.; Li, J. J.; Liu, C. B.; Dong, W. J.; Su, Y. J.; Qiao, L. J.; Gao, L. et al. Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv. Funct. Mater. 2022, 32, 2111740.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the National Key R&D Program of China (No. 2020YFC1808401), the National Natural Science Foundation of China (Nos. 22078213, 21938006, 51973148, and 21776190), and cutting-edge technology basic research project of Jiangsu (No. BK20202012) and the project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). G. P. Z. is also grateful for support from the Project funded by China Postdoctoral Science Foundation (No. 2021M702389) and Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 2022ZB536).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongyun Chen or Jianmei Lu.

Electronic Supplementary Material

12274_2022_5096_MOESM1_ESM.pdf

2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Li, X., Wang, M. et al. 2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution. Nano Res. 16, 6134–6141 (2023). https://doi.org/10.1007/s12274-022-5096-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5096-6

Keywords

Navigation