Skip to main content
Log in

Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We describe here an electro-reforming strategy to upcycle polyethylene terephthalate (PET) waste with simultaneous hydrogen production by a bifunctional nickel-cobalt nitride nanosheets electrocatalyst. PET plastics are digested in alkaline solution giving an electrochemically active monomer ethylene glycol (EG). The introduction of Co in Co-Ni3N/carbon cloth (CC) promotes the redox behavior of Ni2+/Ni3+, which is beneficial for EG oxidation at an ultra-low potential (1.15 V vs. reversible hydrogen electrode (RHE)) and breaks through the limitation of high catalytic potentials of simple Ni-based electrocatalysts (1.30 V). In PET hydrolysate with Co-Ni3N/CC couples, an integrated EG oxidation-hydrogen production system achieves a current density of 50 mA·cm−2 at a cell voltage of 1.46 V, which is 370 mV lower than the conventional water splitting. The in-situ Raman and Fourier transform infrared (FTIR) spectroscopies and density functional theory (DFT) calculations identify the catalytic mechanism and point to advantages of heterostructure engineering in optimizing adsorption energies and promoting catalytic activities for EG oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

    Google Scholar 

  2. Kakadellis, S.; Rosetto, G. Achieving a circular bioeconomy for plastics: Designing plastics for assembly and disassembly is essential to closing the resource loop. Science 2021, 373, 49–50.

    CAS  Google Scholar 

  3. Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.

    Google Scholar 

  4. Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A. A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531.

    CAS  Google Scholar 

  5. Nuelle, M. T.; Dekiff, J. H.; Remy, D.; Fries, E. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 2014, 184, 161–169.

    CAS  Google Scholar 

  6. Achilias, D. S.; Tsintzou, G. P.; Nikolaidis, A. K.; Bikiaris, D. N.; Karayannidis, G. P. Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor. Polym. Int. 2011, 60, 500–506.

    CAS  Google Scholar 

  7. Thiounn, T.; Smith, R. C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364.

    CAS  Google Scholar 

  8. Kim, H. T.; Hee Ryu, M.; Jung, Y. J.; Lim, S.; Song, H. M.; Park, J.; Hwang, S. Y.; Lee, H. S.; Yeon, Y. J.; Sung, B. H. et al. Chemobiological upcycling of poly(ethylene terephthalate) to multifunctional coating materials. ChemSusChem 2021, 14, 4251–4259.

    CAS  Google Scholar 

  9. Rorrer, N. A.; Nicholson, S.; Carpenter, A.; Biddy, M. J.; Grundl, N. J.; Beckham, G. T. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 2019, 3, 1006–1027.

    CAS  Google Scholar 

  10. Kim, H. T.; Kim, J. K.; Cha, H. G.; Kang, M. J.; Lee, H. S.; Khang, T. U.; Yun, E. J.; Lee, D. H.; Song, B. K.; Park, S. J. et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustainable Chem. Eng. 2019, 7, 19396–19406.

    CAS  Google Scholar 

  11. Zhang, F.; Wang, F.; Wei, X. Y.; Yang, Y.; Xu, S. M.; Deng, D. H.; Wang, Y. Z. From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. J. Energy Chem. 2022, 69, 369–388.

    CAS  Google Scholar 

  12. Ügdüler, S.; Van Geem, K. M.; Denolf, R.; Roosen, M.; Mys, N.; Ragaert, K.; De Meester, S. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. Green Chem. 2020, 22, 5376–5394.

    Google Scholar 

  13. Karayannidis, G. P.; Chatziavgoustis, A. P.; Achilias, D. S. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv. Polym. Technol. 2002, 21, 250–259.

    CAS  Google Scholar 

  14. Kao, C. Y.; Cheng, W. H.; Wan, B. Z. Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis. J. Appl. Polym. Sci. 1998, 70, 1939–1945.

    CAS  Google Scholar 

  15. Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 2018, 11, 2853–2857.

    CAS  Google Scholar 

  16. Uekert, T.; Kasap, H.; Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 2019, 141, 15201–15210.

    CAS  Google Scholar 

  17. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    CAS  Google Scholar 

  18. Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

    CAS  Google Scholar 

  19. Niu, Y. L.; Teng, X.; Gong, S. Q.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 2021, 13, 126.

    CAS  Google Scholar 

  20. Gong, S. Q.; Niu, Y. L.; Teng, X.; Liu, X.; Xu, M. Z.; Xu, C.; Meyer, T. J.; Chen, Z. F. Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering. Appl. Catal. B: Environ. 2022, 310, 121333.

    CAS  Google Scholar 

  21. Han, C.; Li, W. J.; Wang, J. Z.; Huang, Z. G. Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution. Nano Res. 2022, 15, 1868–1873.

    CAS  Google Scholar 

  22. Zhang, Y. C.; Han, C. D.; Gao, J.; Pan, L.; Wu, J. T.; Zhu, X. D.; Zou, J. J. NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: A review. ACS Catal. 2021, 11, 12485–12509.

    CAS  Google Scholar 

  23. Lei, Y. T.; Zhang, L. L.; Xu, W. J.; Xiong, C. L.; Chen, W. X.; Xiang, X.; Zhang, B.; Shang, H. S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–6061.

    CAS  Google Scholar 

  24. Wang, S. C.; Liu, B. Y.; Wang, X.; Zhang, Y. J.; Huang, W. Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Res. 2022, 15, 7026–7033.

    CAS  Google Scholar 

  25. Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

    Google Scholar 

  26. Zheng, S. Y.; Qin, H. Y.; Cao, X. J.; Wang, T. Z.; Lu, W. B.; Jiao, L. F. Electron modulation of cobalt carbonate hydroxide by Mo doping for urea-assisted hydrogen production. J. Energy Chem. 2022, 70, 258–265.

    CAS  Google Scholar 

  27. Li, M.; Deng, X. H.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H. P.; Luo, J. L.; Fu, X. Z. CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323.

    CAS  Google Scholar 

  28. Gao, L. F.; Liu, Z. B.; Ma, J. L.; Zhong, L. J.; Song, Z. Q.; Xu, J. N.; Gan, S. Y.; Han, D. X.; Niu, L. NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Appl. Catal. B: Environ. 2020, 261, 118235.

    Google Scholar 

  29. Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

    CAS  Google Scholar 

  30. Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

    CAS  Google Scholar 

  31. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

    CAS  Google Scholar 

  32. Liu, X.; Wang, K. K.; Zhou, L. M.; Pu, H. K.; Zhang, T.; Jia, J.; Deng, Y. J. Shape-controlled synthesis of concave pt and willow-like Pt nanocatalysts via electrodeposition with hydrogen adsorption/desorption and investigation of their electrocatalytic performances toward ethanol oxidation reaction. ACS Sustainable Chem. Eng. 2020, 8, 6449–6457.

    CAS  Google Scholar 

  33. Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

    CAS  Google Scholar 

  34. Mondal, B.; Karjule, N.; Singh, C.; Shimoni, R.; Volokh, M.; Hod, I.; Shalom, M. Unraveling the mechanisms of electrocatalytic oxygenation and dehydrogenation of organic molecules to value-added chemicals over a Ni-Fe oxide catalyst. Adv. Energy Mater. 2021, 11, 2101858.

    CAS  Google Scholar 

  35. Li, J. N.; Li, J. L.; Liu, T.; Chen, L.; Li, Y. F.; Wang, H. L.; Chen, X. R.; Gong, M.; Liu, Z. P.; Yang, X. J. Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis. Angew. Chem., Int. Ed. 2021, 60, 26656–26662.

    CAS  Google Scholar 

  36. Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.

    CAS  Google Scholar 

  37. Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.

    CAS  Google Scholar 

  38. Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

    CAS  Google Scholar 

  39. Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

    CAS  Google Scholar 

  40. Barwe, S.; Weidner, J.; Cychy, S.; Morales, D. M.; Dieckhöfer, S.; Hiltrop, D.; Masa, J.; Muhler, M.; Schuhmann, W. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew. Chem., Int. Ed. 2018, 57, 11460–11464.

    CAS  Google Scholar 

  41. Li, M.; Deng, X. H.; Xiang, K.; Liang, Y.; Zhao, B.; Hao, J.; Luo, J. L.; Fu, X. Z. Value-added formate production from selective methanol oxidation as anodic reaction to enhance electrochemical hydrogen cogeneration. ChemSusChem 2020, 13, 914–921.

    CAS  Google Scholar 

  42. Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

    Google Scholar 

  43. Sha, L. N.; Yin, J. L.; Ye, K.; Wang, G.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G. L.; Cao, D. X. The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2019, 7, 9078–9085.

    CAS  Google Scholar 

  44. Gao, X. R.; Yu, Y.; Liang, Q. R.; Pang, Y. J.; Miao, L. Q.; Liu, X. M.; Kou, Z. K.; He, J. Q.; Pennycook, S. J.; Mu, S. C. et al. Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting. Appl. Catal. B: Environ. 2020, 270, 118889.

    CAS  Google Scholar 

  45. Zhu, C. R.; Wang, A. L.; Xiao, W.; Chao, D. L.; Zhang, X.; Tiep, N. H.; Chen, S.; Kang, J. N.; Wang, X.; Ding, J. et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 30, 1705516.

    Google Scholar 

  46. Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N-N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

    CAS  Google Scholar 

  47. Zhao, B.; Liu, J. W.; Wang, X. W.; Xu, C. Y.; Sui, P.; Feng, R. F.; Wang, L.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 2021, 80, 105530.

    CAS  Google Scholar 

  48. Antolini, E.; Gonzalez, E. R. Alkaline direct alcohol fuel cells. J. Power Sources 2010, 195, 3431–3450.

    CAS  Google Scholar 

  49. Li, Y.; Wei, X. F.; Han, S. H.; Chen, L. S.; Shi, J. L. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem., Int. Ed. 2021, 60, 21464–21472.

    CAS  Google Scholar 

  50. Gomes, J. F.; Garcia, A. C.; Gasparotto, L. H. S.; de Souza, N. E.; Ferreira, E. B.; Pires, C.; Tremiliosi-Filho, G. Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: A cyclic voltammetry and in situ FTIR spectroscopy study. Electrochim. Acta 2014, 144, 361–368.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22072107 and 21872105), the Science & Technology Commission of Shanghai Municipality (No. 19DZ2271500), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuofeng Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Fang, Z., Xiong, D. et al. Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res. 16, 4625–4633 (2023). https://doi.org/10.1007/s12274-022-5085-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5085-9

Keywords

Navigation