Skip to main content
Log in

“One stone, two birds” solvent system to fabricate microcrystalline cellulose-Ti3C2Tx nanocomposite film as a flexible dielectric and thermally conductive material

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A strategy for fabricating microcrystalline cellulose-Ti3C2Tx (MCC-MXene) nanocomposite films with high relative permittivity, high thermal conductivity, and excellent mechanical properties was developed. The MCC-MXene nanocomposite film was fabricated by casting a solution containing N,N-dimethylacetamide/lithium chloride (DMAc/LiCl)-soluble MCC and DMAc-dispersible MXene nanosheets, followed by humidity control drying. The MXene nanosheets greatly enhanced the permittivity of the nanocomposite films owing to interfacial polarization. Thus, the nanocomposite film with 20 wt.% MXene content achieved a desirable permittivity of 71.4 at 102 Hz (a 770% improvement against that of neat cellulose), while the dielectric loss only increased by 1.8 times (from 0.39 to 0.70). The obtained nanocomposite films with 20 wt.% and 30 wt.% MXene exhibited remarkable in-plane thermal conductivities of 8.523 and 9.668 W·m−1·K−1, respectively, owing to the uniform dispersion and self-alignment of the MXene layered structure. Additionally, the uniformly dispersed MXene nanosheets in the MCC network with interfacial interaction (hydrogen bonding) and mechanical entanglement endowed the nanocomposite films with excellent mechanical properties and flexibility. Furthermore, the thermal stability, water resistance, and antibacterial properties of the nanocomposite films were effectively improved with the introduction of MXene. Moreover, using DMAc/LiCl as the solvent system not only improves the compatibility between MCC and MXene but also avoids the problem of easy oxidation of MXene in aqueous systems. With the high stability of the MCC-MXene solution and enhanced properties of the MCC-MXene films, the proposed strategy manifests great potential for fabricating natural biomass-based dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, L.; Cheng, J. S.; Cheng, Y. Y.; Han, T.; Liu, Y.; Zhou, Y.; Zhao, G. H.; Zhao, Y.; Xiong, C. X.; Dong, L. J. et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater. 2021, 33, 2102392.

    Article  CAS  Google Scholar 

  2. Feng, Q. K.; Zhong, S. L.; Pei, J. Y.; Zhao, Y.; Zhang, D. L.; Liu, D. F.; Zhang, Y. X.; Dang, Z. M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 2022, 122, 3820–3878.

    Article  CAS  Google Scholar 

  3. Luo, H.; Zhou, X. F.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K. C.; Zhang, D.; Bowen, C. R.; Wan, C. Y. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465.

    Article  CAS  Google Scholar 

  4. Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Chen, W. S.; Wu, Y. Q.; Yu, H. P. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, 2000619.

    Article  CAS  Google Scholar 

  5. Sun, Z.; Qu, K. Q.; You, Y.; Huang, Z. H.; Liu, S. X.; Li, J.; Hu, Q.; Guo, Z. H. Overview of cellulose-based flexible materials for supercapacitors. J. Mater. Chem. A 2021, 9, 7278–7300.

    Article  CAS  Google Scholar 

  6. Wang, X. D.; Yao, C. H.; Wang, F.; Li, Z. D. Cellulose-based nanomaterials for energy applications. Small 2017, 13, 1702240.

    Article  Google Scholar 

  7. Yang, D.; Kong, X. X.; Ni, Y. F.; Gao, D. H.; Yang, B.; Zhu, Y. Y.; Zhang, L. Q. Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105447.

    Article  Google Scholar 

  8. Zhang, X. H.; Tan, C.; Ma, Y. H.; Wang, F.; Yang, W. T. BaTiO3@carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity. Compos. Sci. Technol. 2018, 162, 180–187.

    Article  Google Scholar 

  9. He, D. L.; Wang, Y.; Song, S. L.; Liu, S.; Deng, Y. Significantly enhanced dielectric performances and high thermal conductivity in poly(vinylidene fluoride)-based composites enabled by SiC@SiO2 core-shell whiskers alignment. ACS Appl. Mater. Interfaces 2017, 9, 44839–44846.

    Article  CAS  Google Scholar 

  10. Budzalek, K.; Ding, H. J.; Janasz, L.; Wypych-Puszkarz, A.; Cetinkaya, O.; Pietrasik, J.; Kozanecki, M.; Ulanski, J.; Matyjaszewski, K. Star polymer-TiO2 nanohybrids to effectively modify the surface of PMMA dielectric layers for solution processable OFETs. J. Mater. Chem. C 2021, 9, 1269–1278.

    Article  CAS  Google Scholar 

  11. Su, Y. T.; Zhang, W. Q.; Lan, J. L.; Sui, G.; Zhang, H. T.; Yang, X. P. Flexible reduced graphene oxide/polyacrylonitrile dielectric nanocomposite films for high-temperature electronics applications. ACS Appl. Nano Mater. 2020, 3, 7005–7015.

    Article  CAS  Google Scholar 

  12. Yan, Y. Z.; Park, S. S.; Moon, H. R.; Zhang, W. J.; Yuan, S.; Shi, L. Y.; Seong, D. G.; Ha, C. S. Thermally robust zirconia nanorod/polyimide hybrid films as a highly flexible dielectric material. ACS Appl. Nano Mater. 2021, 4, 8217–8230.

    Article  CAS  Google Scholar 

  13. Park, J. H.; Oh, J. Y.; Han, S. W.; Lee, T. I.; Baik, H. K. Low-temperature, solution-processed ZrO2:B thin film: A bifunctional inorganic/organic interfacial glue for flexible thin-film transistors. ACS Appl. Mater. Interfaces 2015, 7, 4494–4503.

    Article  CAS  Google Scholar 

  14. Yang, Y. Y.; Zhao, Y. S.; Liu, J.; Nie, Z. K.; Ma, J.; Hua, M. T.; Zhang, Y. C.; Cai, X. F.; He, X. M. Flexible and transparent high-dielectric-constant polymer films based on molecular ferroelectric-modified poly(vinyl alcohol). ACS Materials Lett. 2020, 2, 453–460.

    Article  CAS  Google Scholar 

  15. Alghamdi, H. M.; Rajeh, A. Synthesis of carbon nanotubes/titanium dioxide and study of its effect on the optical, dielectric, and mechanical properties of polyvinyl alcohol/sodium alginate for energy storage devices. Int. J. Energy Res., in press, https://doi.org/10.1002/er.7578.

  16. Chen, Y. W.; Liu, Y. H.; Xia, Y. M.; Liu, X. Q.; Qiang, Z.; Yang, J. Y.; Zhang, B. L.; Hu, Z. D.; Wang, Q.; Wu, W. F. et al. Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite films with enhanced dielectric permittivity and anisotropic light transmission. ACS Appl. Mater. Interfaces 2020, 12, 24242–24249.

    Article  Google Scholar 

  17. Chen, L. M.; Abdalkarim, S. Y. H.; Yu, H. Y.; Chen, X.; Tang, D. P.; Li, Y. Z.; Tam, K. C. Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Res. 2022, 15, 7432–7452.

    Article  CAS  Google Scholar 

  18. Wang, Z. H.; Lee, Y. H.; Kim, S. W.; Seo, J. Y.; Lee, S. Y.; Nyholm, L. Why cellulose-based electrochemical energy storage devices? Adv. Mater. 2021, 33, 2000892.

    Article  CAS  Google Scholar 

  19. Zhang, C. L.; Cha, R. T.; Zhang, P.; Luo, H. Z.; Jiang, X. Y. Cellulosic substrate materials with multi-scale building blocks: Fabrications, properties and applications in bioelectronic devices. Chem. Eng. J. 2022, 430, 132562.

    Article  CAS  Google Scholar 

  20. Lu, J. L.; Hu, S. M.; Li, W. R.; Wang, X. F.; Mo, X. W.; Gong, X. T.; Liu, H.; Luo, W.; Dong, W.; Sima, C. T. et al. A Biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano 2022, 16, 3744–3755.

    Article  CAS  Google Scholar 

  21. Luo, S. B.; Shen, Y. B.; Yu, S. H.; Wan, Y. J.; Liao, W. H.; Sun, R.; Wong, C. P. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 2017, 10, 137–144.

    Article  CAS  Google Scholar 

  22. Beaulieu, M. R.; Baral, J. K.; Hendricks, N. R.; Tang, Y. Y.; Briseño, A. L.; Watkins, J. J. Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. ACS Appl. Mater. Interfaces 2013, 5, 13096–13103.

    Article  CAS  Google Scholar 

  23. Kim, J. O.; Hur, J. S.; Kim, D.; Lee, B.; Jung, J. M.; Kim, H. A.; Chung, U. J.; Nam, S. H.; Hong, Y.; Park, K. S. et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable transistor applications. Adv. Funct. Mater. 2020, 30, 1906647.

    Article  CAS  Google Scholar 

  24. Zhang, D.; Liu, W. W.; Guo, R.; Zhou, K. C.; Luo, H. High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Adv. Sci. 2018, 5, 1700512.

    Article  Google Scholar 

  25. Qian, C.; Zhu, T. W.; Zheng, W. W.; Bei, R. X.; Liu, S. W.; Yu, D. S.; Chi, Z. G.; Zhang, Y.; Xu, J. R. Improving dielectric properties and thermostability of CaCu3Ti4O12/polyimide composites by employing surface hydroxylated CaCu3Ti4O12 particles. ACS Appl. Polym. Mater. 2019, 1, 1263–1271.

    Article  CAS  Google Scholar 

  26. Chen, J. W.; Wang, X. C.; Yu, X. M.; Yao, L. M.; Duan, Z. K.; Fan, Y.; Jiang, Y. W.; Zhou, Y. X.; Pan, Z. B. High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates. J. Mater. Chem. C 2018, 6, 271–279.

    Article  CAS  Google Scholar 

  27. Su, Y. T.; Zhou, M. P.; Sui, G.; Lan, J. L.; Zhang, H. T.; Yang, X. P. Polyvinyl butyral composites containing halloysite nanotubes/reduced graphene oxide with high dielectric constant and low loss. Chem. Eng. J. 2020, 394, 124910.

    Article  CAS  Google Scholar 

  28. Mao, H. J.; Liu, D. F.; Zhang, N.; Huang, T.; Kühnert, I.; Yang, J. H.; Wang, Y. Constructing a microcapacitor network of carbon nanotubes in polymer blends via crystallization-induced phase separation toward high dielectric constant and low loss. ACS Appl. Mater. Interfaces 2020, 12, 26444–26454.

    Article  CAS  Google Scholar 

  29. Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377.

    Article  CAS  Google Scholar 

  30. Mirkhani, S. A.; Zeraati, A. S.; Aliabadian, E.; Naguib, M.; Sundararaj, U. High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18599–18608.

    Article  CAS  Google Scholar 

  31. Zeraati, A. S.; Arjmand, M.; Sundararaj, U. Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: Materials with high dielectric permittivity and low dielectric loss. ACS Appl. Mater. Interfaces 2017, 9, 14328–14336.

    Article  CAS  Google Scholar 

  32. Ma, W. J.; Yang, K.; Wang, H. Y.; Li, H. F. Poly(vinylidene fluoride-co-hexafluoropropylene)-MXene nanosheet composites for microcapacitors. ACS Appl. Nano Mater. 2020, 3, 7992–8003.

    Article  CAS  Google Scholar 

  33. Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

    Article  CAS  Google Scholar 

  34. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  35. Wang, D. Z.; Wei, H.; Lin, Y.; Jiang, P. K.; Bao, H.; Huang, X. Y. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler-filler interface engineering. Compos. Sci. Technol. 2021, 213, 108953.

    Article  CAS  Google Scholar 

  36. Tu, S. B.; Jiang, Q.; Zhang, J. W.; He, X.; Hedhili, M. N.; Zhang, X. X.; Alshareef, H. N. Enhancement of dielectric permittivity of Ti3C2Tx MXene/polymer composites by controlling flake size and surface termination. ACS Appl. Mater. Interfaces 2019, 11, 27358–27362.

    Article  CAS  Google Scholar 

  37. Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

    Article  CAS  Google Scholar 

  38. Liu, R.; Li, W. H. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 2018, 3, 2609–2617.

    Article  CAS  Google Scholar 

  39. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  Google Scholar 

  40. Chen, H. Y.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85.

    Article  CAS  Google Scholar 

  41. Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

    Article  CAS  Google Scholar 

  42. Sun, K.; Wang, F.; Yang, W. K.; Liu, H.; Pan, C. F.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive polyimide fiber/MXene composite film for electromagnetic interference shielding and joule heating with excellent harsh environment tolerance. ACS Appl. Mater. Interfaces 2021, 13, 50368–50380.

    Article  CAS  Google Scholar 

  43. Wang, X. Y.; Wang, Z. Y.; Qiu, J. S. Stabilizing MXene by hydration chemistry in aqueous solution. Angew. Chem., Int. Ed. 2021, 60, 26587–26591.

    Article  CAS  Google Scholar 

  44. Doo, S.; Chae, A.; Kim, D.; Oh, T.; Ko, T. Y.; Kim, S. J.; Koh, D. Y.; Koo, C. M. Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Appl. Mater. Interfaces 2021, 13, 22855–22865.

    Article  CAS  Google Scholar 

  45. Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 2021, 15, 5249–5262.

    Article  CAS  Google Scholar 

  46. Kim, D.; Ko, T. Y.; Kim, H.; Lee, G. H.; Cho, S.; Koo, C. M. Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 2019, 13, 13818–13828.

    Article  CAS  Google Scholar 

  47. Iqbal, A.; Hong, J.; Ko, T. Y.; Koo, C. M. Improving oxidation stability of 2D MXenes: Synthesis, storage media, and conditions. Nano Converg. 2021, 8, 9.

    Article  CAS  Google Scholar 

  48. Tang, X. W.; Murali, G.; Lee, H.; Park, S.; Lee, S.; Oh, S. M.; Lee, J.; Ko, T. Y.; Koo, C. M.; Jeong, Y. J. et al. Engineering aggregation-resistant MXene nanosheets as highly conductive and stable inks for all-printed electronics. Adv. Funct. Mater. 2021, 31, 2010897.

    Article  CAS  Google Scholar 

  49. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

    Article  CAS  Google Scholar 

  50. Chen, J. N.; Yuan, X. L.; Lyu, F. L.; Zhong, Q. X.; Hu, H. C.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1281–1286.

    Article  CAS  Google Scholar 

  51. Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L. et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 2021, 15, 8439–8449.

    Article  CAS  Google Scholar 

  52. Xue, Y. J.; Feng, J. B.; Huo, S. Q.; Song, P. A.; Yu, B.; Liu, L.; Wang, H. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chem. Eng. J. 2020, 397, 125336.

    Article  CAS  Google Scholar 

  53. Halim, J.; Cook, K. M.; Eklund, P.; Rosen, J.; Barsoum, M. W. XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes). Appl. Surf. Sci. 2019, 494, 1138–1147.

    Article  CAS  Google Scholar 

  54. Karmakar, K.; Sarkar, P.; Sultana, J.; Kurra, N.; Rao, K. D. M. Layer-by-layer assembly-based heterointerfaces for modulating the electronic properties of Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2021, 13, 59104–59114.

    Article  CAS  Google Scholar 

  55. Cao, W. T.; Ma, C.; Mao, D. S.; Zhang, J.; Ma, M. G.; Chen, F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 2019, 29, 1905898.

    Article  CAS  Google Scholar 

  56. French, A. D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896.

    Article  CAS  Google Scholar 

  57. Shin, I.; Postnova, I.; Shchipunov, Y.; Ha, C. S. Transparent regenerated cellulose bionanocomposite film reinforced by exfoliated montmorillonite with polyhedral oligomeric silsesquioxane bearing amino groups. Compos. Interfaces 2021, 28, 653–669.

    Article  CAS  Google Scholar 

  58. Wang, S. R.; Tambraparni, M.; Qiu, J. J.; Tipton, J.; Dean, D. Thermal expansion of graphene composites. Macromolecules 2009, 42, 5251–5255.

    Article  CAS  Google Scholar 

  59. Du, J. H.; Cheng, H. M. The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 2012, 213, 1060–1077.

    Article  CAS  Google Scholar 

  60. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

    Article  CAS  Google Scholar 

  61. Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

    Article  Google Scholar 

  62. Rana, S. M. S.; Rahman, M. T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J. Y. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967.

    Article  CAS  Google Scholar 

  63. Deng, Q. H.; Zhou, F. R.; Qin, B.; Feng, Y. F.; Xu, Z. C. Eco-friendly poly(vinyl alcohol)/delaminated V2C MXene high-k nanocomposites with low dielectric loss enabled by moderate polarization and charge density at the interface. Ceram. Int. 2020, 46, 27326–27335.

    Article  CAS  Google Scholar 

  64. Li, W. Y.; Song, Z. Q.; Zhong, J. M.; Qian, J.; Tan, Z. Y.; Wu, X. Y.; Chu, H. Y.; Nie, W.; Ran, X. H. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C 2019, 7, 10371–10378.

    Article  CAS  Google Scholar 

  65. Yu, S. Q.; Ding, C. L.; Liu, Y.; Liu, Y.; Zhang, Y.; Luo, H.; Zhang, D.; Chen, S. Enhanced breakdown strength and energy density over a broad temperature range in polyimide dielectrics using oxidized MXenes filler. J. Power Sources 2022, 535, 231415.

    Article  CAS  Google Scholar 

  66. Yin, Y. A.; Zhang, C. G.; Chen, J. S.; Yu, W. C.; Shi, Z. Q.; Xiong, C. X.; Yang, Q. L. Cellulose/BaTiO3 nanofiber dielectric films with enhanced energy density by interface modification with poly(dopamine). Carbohydr. Polym. 2020, 249, 116883.

    Article  CAS  Google Scholar 

  67. Zhang, C. G.; Yin, Y. A.; Yang, Q. L.; Shi, Z. Q.; Hu, G. H.; Xiong, C. X. Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustain. Chem. Eng. 2019, 7, 10641–10648.

    Article  CAS  Google Scholar 

  68. Wang, F. J.; Wang, M. H.; Shao, Z. Q. Dispersion of reduced graphene oxide with montmorillonite for enhancing dielectric properties and thermal stability of cyanoethyl cellulose nanocomposites. Cellulose 2018, 25, 7143–7152.

    Article  CAS  Google Scholar 

  69. Lao, J. P.; Xie, H. A.; Shi, Z. Q.; Li, G.; Li, B.; Hu, G. H.; Yang, Q. L.; Xiong, C. X. Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain. Chem. Eng. 2018, 6, 7151–7158.

    Article  CAS  Google Scholar 

  70. Tao, J.; Cao, S. A. Flexible high dielectric thin films based on cellulose nanofibrils and acid oxidized multi-walled carbon nanotubes. RSC Adv. 2020, 10, 10799–10805.

    Article  CAS  Google Scholar 

  71. Tao, J.; Cao, S. A.; Liu, W.; Deng, Y. L. Facile preparation of high dielectric flexible films based on titanium dioxide and cellulose nanofibrils. Cellulose 2019, 26, 6087–6098.

    Article  CAS  Google Scholar 

  72. Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

    Article  CAS  Google Scholar 

  73. Song, N.; Hou, X. S.; Chen, L.; Cui, S. Q.; Shi, L. Y.; Ding, P. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl. Mater. Interfaces 2017, 9, 17914–17922.

    Article  CAS  Google Scholar 

  74. Song, N.; Cao, D. L.; Luo, X.; Guo, Y. Q.; Gu, J. W.; Ding, P. Aligned cellulose/nanodiamond plastics with high thermal conductivity. J. Mater. Chem. C 2018, 6, 13108–13113.

    Article  CAS  Google Scholar 

  75. Wang, X. W.; Wu, P. Y. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 2018, 10, 34311–34321.

    Article  CAS  Google Scholar 

  76. Song, G. C.; Kang, R. Y.; Guo, L. C.; Ali, Z.; Chen, X. Y.; Zhang, Z. Y.; Yan, C.; Lin, C. T.; Jiang, N.; Yu, J. H. Highly flexible few-layer Ti3C2 MXene/cellulose nanofiber heat-spreader films with enhanced thermal conductivity. New J. Chem. 2020, 44, 7186–7193.

    Article  CAS  Google Scholar 

  77. Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Advx. Compos. Hybrid Mater. 2021, 4, 274–285.

    Article  CAS  Google Scholar 

  78. Zhu, Y.; Zhao, X. B.; Peng, Q. Y.; Zheng, H. W.; Xue, F. H.; Li, P. Y.; Xu, Z. H.; He, X. D. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy. Nanoscale Adv. 2021, 3, 5683–5693.

    Article  CAS  Google Scholar 

  79. Chu, Q. D.; Lin, H.; Ma, M.; Chen, S.; Shi, Y. Q.; He, H. W.; Wang, X. Cellulose nanofiber/graphene nanoplatelet/MXene nanocomposites for enhanced electromagnetic shielding and high in-plane thermal conductivity. ACS Appl. Nano Mater. 2022, 5, 7217–7227.

    Article  CAS  Google Scholar 

  80. Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Hu, Z. R.; Chen, B.; Shi, J.; Lu, M. G. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106417.

    Article  CAS  Google Scholar 

  81. Wang, X. F.; Lei, Z. W.; Ma, X. D.; He, G. F.; Xu, T.; Tan, J.; Wang, L. L.; Zhang, X. S.; Qu, L. J.; Zhang, X. J. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 2022, 430, 132605.

    Article  CAS  Google Scholar 

  82. Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

    Article  CAS  Google Scholar 

  83. Du, H. S.; Parit, M.; Liu, K.; Zhang, M. M.; Jiang, Z. H.; Huang, T. S.; Zhang, X. Y.; Si, C. L. Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 2021, 13, 32115–32125.

    Article  CAS  Google Scholar 

  84. Zhang, C.; Liu, R. G.; Xiang, J. F.; Kang, H. L.; Liu, Z. J.; Huang, Y. Dissolution mechanism of cellulose in N, N-Dimethylacetamide/lithium chloride: Revisiting through molecular interactions. J. Phys. Chem. B 2014, 118, 9507–9514.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, Korea (NRF-2021R1I1A3060098; NRF-2021R1I1A3059777). The work was supported by the Brain Korea 21 Plus Program (4199990414196) and the Korea Institute for Advancement of Technology funded by the Ministry of Trade, Industry and Energy (P0017531). Y. Z. Y. was partially supported by the China Scholarship Council (No. 201908260073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Sik Ha.

Electronic Supplementary Material

12274_2022_5062_MOESM1_ESM.pdf

“One stone, two birds” solvent system to fabricate microcrystalline cellulose-Ti3C2Tx nanocomposite film as a flexible dielectric and thermally conductive material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YZ., Li, S., Park, S.S. et al. “One stone, two birds” solvent system to fabricate microcrystalline cellulose-Ti3C2Tx nanocomposite film as a flexible dielectric and thermally conductive material. Nano Res. 16, 3240–3253 (2023). https://doi.org/10.1007/s12274-022-5062-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5062-3

Keywords

Navigation