Skip to main content
Log in

Interfacial engineering of SnO2/Bi2O2CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical CO2 reduction is a viable, economical, and sustainable method to transform atmospheric CO2 into carbon-based fuels and effectively reduce climate change and the energy crisis. Constructing robust catalysts through interface engineering is significant for electrocatalytic CO2 reduction (ECR) but remains a grand challenge. Herein, SnO2/Bi2O2CO3 heterojunction on N,S-codoped-carbon (SnO2/BOC@NSC) with efficient ECR performance was firstly constructed by a facile synthetic strategy. When the SnO2/BOC@NSC was utilized in ECR, it exhibits a large formic acid (HCOOH) partial current density (JHCOOH) of 86.7 mA·cm−2 at −1.2 V versus reversible hydrogen electrode (RHE) and maximum Faradaic efficiency (FE) of HCOOH (90.75% at −1.2 V versus RHE), respectively. Notably, the FEHCOOH of SnO2/BOC@NSC is higher than 90% in the flow cell and the JHCOOH of SnO2/BOC@NSC can achieve 200 mA·cm−2 at −0.8 V versus RHE to meet the requirements of industrialization level. The comparative experimental analysis and in-situ X-ray absorption fine structure reveal that the excellent ECR performance can be ascribed to the synergistic effect of SnO2/BOC heterojunction, which enhances the activation of CO2 molecules and improves electron transfer. This work provides an efficient SnO2-based heterojunction catalyst for effective formate production and offers a novel approach for the construction of new types of metal oxide heterostructures for other catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  2. Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

    Article  CAS  Google Scholar 

  3. Wang, X.; Wang, Z. Y.; De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

    Article  CAS  Google Scholar 

  4. Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu−Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.

    Article  CAS  Google Scholar 

  5. Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.

    Article  Google Scholar 

  6. Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.

    Article  CAS  Google Scholar 

  7. Chen, B. T.; Li, B. R.; Tian, Z. Q.; Liu, W. B.; Liu, W. P.; Sun, W. W.; Wang, K.; Chen, L.; Jiang, J. Z. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni-N4 sites. Adv. Energy Mater. 2021, 11, 2102152.

    Article  CAS  Google Scholar 

  8. Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

    Article  CAS  Google Scholar 

  9. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  10. Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202210789.

  11. Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

    Article  CAS  Google Scholar 

  12. Zhang, G. X.; Jia, Y.; Zhang, C.; Xiong, X. Y.; Sun, K.; Chen, R. D.; Chen, W. X.; Kuang, Y.; Zheng, L. R.; Tang, H. L. et al. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 2019, 12, 1317–1325.

    Article  CAS  Google Scholar 

  13. Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

    Article  CAS  Google Scholar 

  14. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

    Article  CAS  Google Scholar 

  15. Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

    Article  CAS  Google Scholar 

  16. Yang, S. X.; Qiao, Y.; He, P.; Liu, Y. J.; Cheng, Z.; Zhu, J. J.; Zhou, H. S. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ. Sci. 2017, 10, 972–978.

    Article  CAS  Google Scholar 

  17. Wang, Z.; Wang, X. Y.; Cong, S.; Chen, J.; Sun, H. Z.; Chen, Z. G.; Song, G.; Geng, F. X.; Chen, Q.; Zhao, Z. G. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat. Commun. 2020, 11, 302.

    Article  Google Scholar 

  18. Wang, Q. S.; Zheng, X. B.; Wu, J. B.; Wang, Y.; Wang, D. S.; Li, Y. D. Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 2022, 3, 2200059.

    Article  CAS  Google Scholar 

  19. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dualatom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    Article  CAS  Google Scholar 

  20. Sun, X. H.; Sun, L. A.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

    Article  CAS  Google Scholar 

  21. Li, J.; Chen, G. X.; Zhu, Y. Y.; Liang, Z.; Pei, A.; Wu, C. L.; Wang, H. X.; Lee, H. R.; Liu, K.; Chu, S. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 2018, 1, 592–600.

    Article  CAS  Google Scholar 

  22. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  CAS  Google Scholar 

  23. To, J. W. F.; He, J. J.; Mei, J. G.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S. C.; Bae, W. G.; Pan, L. J.; Tok, J. B. H. et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.

    Article  CAS  Google Scholar 

  24. Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

    Article  CAS  Google Scholar 

  25. Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitsk, E.; Alshareef, H. N.; Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 2019, 4, 776–785.

    Article  CAS  Google Scholar 

  26. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  27. Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy, in press, https://doi.org/10.1002/cey2.194.

  28. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    Article  CAS  Google Scholar 

  29. Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

    Article  CAS  Google Scholar 

  30. Tang, S. F.; Lu, X. L.; Zhang, C.; Wei, Z. W.; Si, R.; Lu, T. B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull. 2021, 66, 1533–1541.

    Article  CAS  Google Scholar 

  31. Dong, L. Z.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W. X.; Lan, Y. Q. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 2659–2663.

    Article  CAS  Google Scholar 

  32. Wang, X. W.; Wu, D.; Kang, X. M.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Densely packed ultrafine SnO2 nanoparticles grown on carbon cloth for selective CO2 reduction to formate. J. Energy Chem. 2022, 71, 159–166.

    Article  CAS  Google Scholar 

  33. Wang, Y. R.; Yang, R. X.; Chen, Y. F.; Gao, G. K.; Wang, Y. J.; Li, S. L.; Lan, Y. Q. Chloroplast-like porous bismuth-based core-shell structure for high energy efficiency CO2 electroreduction. Sci. Bull. 2020, 65, 1635–1642.

    Article  CAS  Google Scholar 

  34. Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    Article  CAS  Google Scholar 

  35. Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803.

    Article  CAS  Google Scholar 

  36. Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

    Article  Google Scholar 

  37. Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and highperformance Zn−CO2 batteries. Adv. Mater. 2020, 32, 2002430.

    Article  CAS  Google Scholar 

  38. Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

    Article  CAS  Google Scholar 

  39. Huang, H. N.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary. Angew. Chem., Int. Ed. 2022, 61, e202200802.

    CAS  Google Scholar 

  40. Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

    Article  CAS  Google Scholar 

  41. Rogers, C.; Perkins, W. S.; Veber, G.; Williams, T. E.; Cloke, R. R.; Fischer, F. R. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J. Am. Chem. Soc. 2017, 139, 4052–4061.

    Article  CAS  Google Scholar 

  42. Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; He, H. Y.; Huang, F. Q.; Cao, Y. Dehydrogenation of formic acid at room temperature: Boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angew. Chem., Int. Ed. 2016, 55, 11849–11853.

    Article  CAS  Google Scholar 

  43. Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.

    Article  Google Scholar 

  44. Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828–13833.

    Article  CAS  Google Scholar 

  45. Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.

    Article  CAS  Google Scholar 

  46. Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. H. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd−O−Sn interfaces. Angew. Chem., Int. Ed. 2018, 57, 9475–9479.

    Article  CAS  Google Scholar 

  47. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+−N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    Article  CAS  Google Scholar 

  48. Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

    Article  CAS  Google Scholar 

  49. Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

    Article  CAS  Google Scholar 

  50. Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

    Article  CAS  Google Scholar 

  51. Wang, Y. T.; Li, Y. H.; Liu, J. Z.; Dong, C. X.; Xiao, C. Q.; Cheng, L.; Jiang, H. L.; Jiang, H.; Li, C. Z. BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel. Angew. Chem., Int. Ed. 2021, 60, 7681–7685.

    Article  CAS  Google Scholar 

  52. Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. Ag−Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885–1893.

    Article  CAS  Google Scholar 

  53. Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.

    Article  CAS  Google Scholar 

  54. Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

    Article  CAS  Google Scholar 

  55. Liu, S. B.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499–8503.

    Article  CAS  Google Scholar 

  56. Yang, Q.; Wu, Q. L.; Liu, Y.; Luo, S. P.; Wu, X. T.; Zhao, X. X.; Zou, H. Y.; Long, B. H.; Chen, W.; Liao, Y. J. et al. Novel Bi-doped amorphous SnOx nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials. Adv. Mater. 2020, 32, 2002822.

    Article  CAS  Google Scholar 

  57. Xing, Y. L.; Kong, X. D.; Guo, X.; Liu, Y.; Li, Q. Y.; Zhang, Y. Z.; Sheng, Y. L.; Yang, X. P.; Geng, Z. G.; Zeng, J. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 2020, 7, 1902989.

    Article  CAS  Google Scholar 

  58. Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

    Article  CAS  Google Scholar 

  59. Wen, G. B.; Lee, D. U.; Ren, B. H.; Hassan, F. M.; Jiang, G. P.; Cano, Z. P.; Gostick, J.; Croiset, E.; Bai, Z. Y.; Yang, L. et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 2018, 8, 1802427.

    Article  Google Scholar 

  60. Liang, Y.; Zhou, W.; Shi, Y. M.; Liu, C. B.; Zhang, B. Unveiling in situ evolved In/In2O3−x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Sci. Bull. 2020, 65, 1547–1554.

    Article  CAS  Google Scholar 

  61. Prabhu, P.; Jose, V.; Lee, J. M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Adv. Funct. Mater. 2020, 30, 1910768.

    Article  CAS  Google Scholar 

  62. Feng, X. Z.; Zou, H. Y.; Zheng, R. J.; Wei, W. F.; Wang, R. H.; Zou, W. S.; Lim, G.; Hong, J.; Duan, L. L.; Chen, H. Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate. Nano Lett. 2022, 22, 1656–1664.

    Article  CAS  Google Scholar 

  63. Zhao, X. L.; Huang, M.; Deng, B. W.; Li, K. L.; Li, F.; Dong, F. Interfacial engineering of In2O3/InN heterostructure with promoted charge transfer for highly efficient CO2 reduction to formate. Chem. Eng. J. 2022, 437, 135114.

    Article  CAS  Google Scholar 

  64. Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.

    Article  CAS  Google Scholar 

  65. Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.

    Article  CAS  Google Scholar 

  66. Pan, F. P.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 2020, 13, 2275–2309.

    Article  CAS  Google Scholar 

  67. Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q. et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem., Int. Ed. 2020, 59, 13021–13027.

    Article  CAS  Google Scholar 

  68. Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

    Article  CAS  Google Scholar 

  69. Liu, G. B.; Li, Z. H.; Shi, J. J.; Sun, K.; Ji, Y. J.; Wang, Z. G.; Qiu, Y. F.; Liu, Y. Y.; Wang, Z. J.; Hu, P. A. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Appl. Catal. B:Environ. 2020, 260, 118134.

    Article  CAS  Google Scholar 

  70. Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290–4293.

    Article  CAS  Google Scholar 

  71. Zhang, Y.; Zhang, X. L.; Ling, Y. Z.; Li, F. W.; Bond, A. M.; Zhang, J. Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew. Chem., Int. Ed. 2018, 57, 13283–13287.

    Article  CAS  Google Scholar 

  72. Wang, Y. H.; Wang, B.; Jiang, W. J.; Liu, Z. L.; Zhang, J. W.; Gao, L. Z.; Yao, W. Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi−O structures toward formic acid electrosynthesis over a wide potential window. Nano Res. 2022, 15, 2919–2927.

    Article  Google Scholar 

  73. Zheng, X. L.; De Luna, P.; De Arquer, F. P. G.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.

    Article  CAS  Google Scholar 

  74. Fu, H. Q.; Liu, J. X.; Bedford, N. M.; Wang, Y.; Wright, J.; Liu, P. F.; Wen, C. F.; Wang, L.; Yin, H. J.; Qi, D. C. et al. Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 2022, 14, 121.

    Article  CAS  Google Scholar 

  75. Fan, T. T.; Ma, W. C.; Xie, M. C.; Liu, H.; Zhang, J. G.; Yang, S. L.; Huang, P. P.; Dong, Y. Y.; Chen, Z.; Yi, X. D. Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts. Cell Rep. Phys. Sci. 2021, 2, 100353.

    Article  CAS  Google Scholar 

  76. Liu, P. F.; Zu, M. Y.; Zheng, L. R.; Yang, H. G. Bismuth oxyiodide microflower-derived catalysts for efficient CO2 electroreduction in a wide negative potential region. Chem. Commun. 2019, 55, 12392–12395.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21631003 and 22001015), the Fundamental Research Funds for the Central Universities (No. 2050205), and University of Science and Technology Beijing. The authors wish to thank the facility support of the 4B9A beamline of the Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Sun, Baotong Chen or Jianzhuang Jiang.

Electronic supplementary material

12274_2022_5058_MOESM1_ESM.pdf

Interfacial engineering of SnO2/Bi2O2CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Sun, T., Xu, L. et al. Interfacial engineering of SnO2/Bi2O2CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate. Nano Res. 16, 2278–2285 (2023). https://doi.org/10.1007/s12274-022-5058-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5058-z

Keywords

Navigation