Skip to main content
Log in

Body-area sensor network featuring micropyramids for sports healthcare

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

This article has been updated

Abstract

Monitoring physiological signals of the human body can provide extremely important information for sports healthcare, preventing injuries and providing efficient guidance for individual sports. However, the signals related to human healthcare involve both subtle and vigorous signals, making it difficult for a sensor to satisfy the full-scale monitoring at the same time. Here, a novel conductive elastomer featuring homogeneously micropyramid-structured PDMS/CNT composite is used to fabricate high-performance piezoresistive sensors by a drop-casting method. Benefiting from the significant increase in the contact area of microstructure during deformation, the flexible sensor presents a broad detection range (up to 185.5 kPa), fast response/recovery time (44/13 ms), ultrahigh sensitivity (242.4 kPa−1) and excellent durability over 8,000 cycles. As a proof of concept, the as-fabricated pressure sensor can be used for body-area sports healthcare, and enable the detection of full-scale pressure distribution. Considering the fabulous sensing performance, the sensor may potentially become promising in personal sports healthcare and telemedicine monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 November 2022

    In this article 4 movies have been included.

References

  1. Yu, Y.; Li, J. H.; Solomon, S. A.; Min, J. H.; Tu, J. B.; Guo, W.; Xu, C. H.; Song, Y.; Gao, W. All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 2022, 7, eabn0495.

    Article  Google Scholar 

  2. Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

    Article  CAS  Google Scholar 

  3. Wang, W. C.; Wang, S. H.; Rastak, R.; Ochiai, Y.; Niu, S. M.; Jiang, Y. W.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150.

    Article  CAS  Google Scholar 

  4. Yan, C.; Deng, W. L.; Jin, L.; Yang, T.; Wang, Z. X.; Chu, X.; Su, H.; Chen, J.; Yang, W. Q. Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring. ACS Appl. Mater. Interfaces 2018, 10, 41070–41075.

    Article  CAS  Google Scholar 

  5. Wei, X.; Li, H.; Yue, W. J.; Gao, S.; Chen, Z. X.; Li, Y.; Shen, G. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501.

    Article  Google Scholar 

  6. Yu, X. G.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479.

    Article  CAS  Google Scholar 

  7. Wang, C. Y.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146.

    Article  CAS  Google Scholar 

  8. Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

    Article  Google Scholar 

  9. Niu, H. S.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, Y. K.; Yue, W. J.; Zhou, W. J.; Shen, G. Z. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, 2202622.

    Article  CAS  Google Scholar 

  10. Shi, Z. Y.; Meng, L. X.; Shi, X. L.; Li, H. P.; Zhang, J. Z.; Sun, Q. Q.; Liu, X. Y.; Chen, J. Z.; Liu, S. R. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 2022, 14, 141.

    Article  CAS  Google Scholar 

  11. Gou, G. Y.; Li, X. S.; Jian, J. M.; Tian, H.; Wu, F.; Ren, J.; Geng, X. S.; Xu, J. D.; Qiao, Y. C.; Yan, Z. Y. et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156.

    Article  CAS  Google Scholar 

  12. Gao, Y. Y.; Yan, C.; Huang, H. C.; Yang, T.; Tian, G.; Xiong, D.; Chen, N. J.; Chu, X.; Zhong, S.; Deng, W. L. et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 2020, 30, 1909603.

    Article  CAS  Google Scholar 

  13. Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

    Article  CAS  Google Scholar 

  14. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  CAS  Google Scholar 

  15. Tian, G.; Deng, W. L.; Xiong, D.; Yang, T.; Zhang, B. B.; Ren, X. R.; Lan, B. L.; Zhong, S.; Jin, L.; Zhang, H. R. et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814.

    Article  CAS  Google Scholar 

  16. Lee, S.; Franklin, S.; Hassani, F. A.; Yokota, T.; Nayeem, O. G.; Wang, Y.; Leib, R.; Cheng, G.; Franklin, D. W.; Someya, T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020, 370, 966–970.

    Article  CAS  Google Scholar 

  17. Zhu, P.; Du, H. F.; Hou, X. Y.; Lu, P.; Wang, L.; Huang, J.; Bai, N. N.; Wu, Z. G.; Fang, N. X.; Guo, C. F. Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 2021, 12, 4731.

    Article  CAS  Google Scholar 

  18. Zhang, B. B.; Wu, Z. Y.; Lin, Z. M.; Guo, H. Y.; Chun, F. J.; Yang, W. Q.; Wang, Z. L. All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44.

    Article  CAS  Google Scholar 

  19. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    Article  CAS  Google Scholar 

  20. Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

    Article  CAS  Google Scholar 

  21. Chen, G. R.; Zhao, X.; Andalib, S.; Xu, J.; Zhou, Y. H.; Tat, T.; Lin, K.; Chen, J. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021, 4, 3725–3740.

    Article  CAS  Google Scholar 

  22. Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

    Article  CAS  Google Scholar 

  23. Zhao, X.; Zhou, Y. H.; Xu, J.; Chen, G. R.; Fang, Y. S.; Tat, T.; Xiao, X.; Song, Y.; Li, S.; Chen, J. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 2021, 12, 6755.

    Article  CAS  Google Scholar 

  24. Yue, Y.; Liu, N. S.; Liu, W. J.; Li, M.; Ma, Y. N.; Luo, C.; Wang, S. L.; Rao, J. Y.; Hu, X. K.; Su, J. et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87.

    Article  CAS  Google Scholar 

  25. Qi, K.; Zhou, Y. M.; Ou, K. K.; Dai, Y. L.; You, X. L.; Wang, H. B.; He, J. X.; Qin, X. H.; Wang, R. W. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon 2020, 170, 464–476.

    Article  CAS  Google Scholar 

  26. Clevenger, M.; Kim, H.; Song, H. W.; No, K.; Lee, S. Binder-free printed pedot wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci. Adv. 2021, 7, eabj8958.

    Article  CAS  Google Scholar 

  27. Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

    Article  CAS  Google Scholar 

  28. Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

    Article  Google Scholar 

  29. Jin, X. J.; Li, L. L.; Zhao, S. F.; Li, X. H.; Jiang, K.; Wang, L. L.; Shen, G. Z. Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 2021, 15, 18385–18393.

    Article  CAS  Google Scholar 

  30. Lee, Y.; Park, J.; Cho, S.; Shin, Y. E.; Lee, H.; Kim, J.; Myoung, J.; Cho, S.; Kang, S.; Baig, C. et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018, 12, 4045–4054.

    Article  CAS  Google Scholar 

  31. Yang, T.; Deng, W. L.; Chu, X.; Wang, X.; Hu, Y. T.; Fan, X.; Song, J.; Gao, Y. Y.; Zhang, B. B.; Tian, G. et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 2021, 15, 11555–11563.

    Article  CAS  Google Scholar 

  32. Park, H.; Jeong, Y. R.; Yun, J.; Hong, S. Y.; Jin, S.; Lee, S. J.; Zi, G.; Ha, J. S. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 2015, 9, 9974–9985.

    Article  CAS  Google Scholar 

  33. Sun, K.; Ko, H.; Park, H. H.; Seong, M.; Lee, S. H.; Yi, H.; Park, H. W.; Kim, T. I.; Pang, C.; Jeong, H. E. Hybrid architectures of heterogeneous carbon nanotube composite microstructures enable multiaxial strain perception with high sensitivity and ultrabroad sensing range. Small 2018, 14, 1803411.

    Article  Google Scholar 

  34. Li, G.; Chen, D.; Li, C. L.; Liu, W. X.; Liu, H. Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range. Adv. Sci. 2020, 7, 2000154.

    Article  Google Scholar 

  35. Ma, C.; Xu, D.; Wang, P. Q.; Lin, Z. Y.; Zhou, J. Y.; Jia, C. C.; Huang, J.; Li, S. T.; Huang, Y.; Duan, X. F. Two-dimensional van der waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Res. 2021, 14, 3395–3401.

    Article  CAS  Google Scholar 

  36. Ruth, S. R. A.; Beker, L.; Tran, H.; Feig, V. R.; Matsuhisa, N.; Bao, Z. N. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 2020, 30, 1903100.

    Article  CAS  Google Scholar 

  37. Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

    Article  CAS  Google Scholar 

  38. Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

    Article  CAS  Google Scholar 

  39. Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 2017, 27, 1606066.

    Article  Google Scholar 

  40. Zhong, M. J.; Zhang, L. J.; Liu, X.; Zhou, Y. N.; Zhang, M. Y.; Wang, Y. J.; Yang, L.; Wei, D. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem. Eng. J. 2021, 412, 128649.

    Article  CAS  Google Scholar 

  41. Wang, H. M.; Li, S.; Wang, Y. L.; Wang, H. M.; Shen, X. Y.; Zhang, M. C.; Lu, H. J.; He, M. S.; Zhang, Y. Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 2020, 32, 1908214.

    Article  CAS  Google Scholar 

  42. Wang, L.; Dou, W. K.; Chen, J.; Lu, K. C.; Zhang, F.; Abdulaziz, M.; Su, W. G.; Li, A. Q.; Xu, C. H.; Sun, Y. A CNT-PDMS wearable device for simultaneous measurement of wrist pulse pressure and cardiac electrical activity. Mater. Sci. Eng. C 2020, 117, 111345.

    Article  Google Scholar 

  43. Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

    Article  CAS  Google Scholar 

  44. Huang, J. X.; Wang, H. G.; Li, Z. P.; Wu, X. Z.; Wang, J. Q.; Yang, S. R. Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 2019, 7, 7386–7394.

    Article  CAS  Google Scholar 

  45. Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 2021, 420, 127720.

    Article  CAS  Google Scholar 

  46. Luo, N. Q.; Huang, Y.; Liu, J.; Chen, S. C.; Wong, C. P.; Zhao, N. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: Decoupled property tuning and bending reliability. Adv. Mater. 2017, 29, 1702675.

    Article  Google Scholar 

  47. Fleming, S.; Thompson, M.; Stevens, R.; Heneghan, C.; Plüddemann, A.; Maconochie, I.; Tarassenko, L.; Mant, D. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet 2011, 377, 1011–1018.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61801403), the Sichuan province Foundation for Distinguished Young Team (No. 20CXTD0106), and the Basic Research Cultivation Project (No. 2682021ZTPY004). We would like to thank the Analysis and Testing Center of Southwest Jiaotong University and Ceshigo Research Service for their testing services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Deng, Jun Chen or Weiqing Yang.

Electronic Supplementary Material

Body-area sensor network featuring micropyramids for sports healthcare

Supplementary Material

Supplementary Material

Supplementary Material

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Deng, W., Yang, T. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 16, 1330–1337 (2023). https://doi.org/10.1007/s12274-022-5014-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5014-y

Keywords

Navigation